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Introduction

Many applications need to sort an array of n elements.

We will cover the following algorithms

1 Bubble Sort

2 Insertion Sort

3 QuickSort

4 MergeSort

5 HeapSort
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Bubble sort

The input is an array of n elements a[0] . . . a[n − 1].

The idea of bubble sort is to keep swapping an element with its right
neighbor as long as it is larger than the neighbor.

This is done n − 1 times because
I the first time the largest element is moved all the way to the end of the

array.
I the second pass will put the second largest element in the slot before

the last ... etc
I The n − 1th pass will put the n − 1th element in its proper place.
I The smallest element is already in its proper place so there is no need

for the nth pass.
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Example
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Bubble sort code

BUBBLE-SORT(a,n)

for i = 1 to n − 1 do
for k = 0 to n − 2 do

if a[k] > a[k + 1] then
tmp ← a[k + 1]
a[k + 1]← a[k]
a[k]← tmp

end

end

end

Inner loop operations do not depend on i so the algorithm will
perform Θ(n2) iterations no matter what the input is.

That is why the number of comparisons is Θ(n2) on all input.

The number of swaps depends on the number of times the if
statement evaluates to true. We’ll get back to this later.
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Insertion Sort

A similar but better algorithm is insertion sort.

Insertion sort saves on unnecessary comparisons.

The basic idea is that after pass k − 1 the portion of the array:
a[0] . . . a[k − 1] is sorted.

Pass k depends on that property as follows:

Repeatedly compare a[k] with a[i ], i = k − 1,k − 2,. . ..

If at any point a[k] > a[i ] stop and the subarray a[0], . . . , a[k] is
sorted.

Hikmat Farhat Data Structures June 20, 2018 6 / 43



Example insertion sort
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Code for insertion sort

INSERTION-SORT(a,n)

for i = 1 to n − 1 do
tmp ← a[i ]
k ← i
while k > 0 and tmp < a[k − 1] do

a[k] = a[k − 1]
k ← k − 1

end
a[k]← tmp

end

Notice that the algorithm exits the inner loop whenever
tmp ≥ a[k − 1].

Hikmat Farhat Data Structures June 20, 2018 8 / 43



Comparison

First we compare the two algorithm, by counting the number of
comparisons and the number of swaps on the input array

17,1,2,8,3,9,15,16

Bubble sort we do 7× 7 = 49 comparisons.

first pass we do 2 swaps and subsequently 1 swap each pass for a
total of 8 swaps.

insertion sort gives 7 comparisons and 8 swaps.
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Complexity

In the case of bubble sort worst case, average case and best case are
all O(n2) operations (total=comparison+swaps).

In insertion sort the best case is O(n) if the array is already sorted
and O(n2) if the array is reversely sorted.

The average case is O(n2) for both.

If we consider swaps only both have the same number of operations
which is 0,O(n2),O(n2) for best,worst and average case respectively.

Therefore insertion sort saves on comparisons only.
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General result

Both bubble and insertion sort exchange adjacent elements.

Given an array a[0] . . . a[n] if i < j and a[i ] > a[j ] then (i , j) is called
an inversion.

The average the number of inversions in an array with n distinct
elements is n(n − 1)/4.

This is because the number of pairs is
∑n

i=1

∑n
j=i+1 1 = n(n − 1)/2.

On average, for a random input, half of them are inverted for average
number of inversions of n(n − 1)/4.

When we swap two adjacent elements only one inversion is removed

Therefore, on average, we need Ω(n2) number of swaps to sort an
array.

Any algorithm that works by swapping adjacent element will be
Ω(n2) on average.
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Quicksort

quicksort is a divide and conquer algorithm.

Given an array a it works as follows
1 If the number of elements is 0 or 1 then nothing is done so return.
2 pick an element v from the array called the pivot.
3 Partition a− v into two groups: a1 = {x ∈ a− v | x ≤ v} all elements

that are smaller than v , a2 = {x ∈ a− v | x ≥ v} all elements greater
than v are in the second group.

4 the results is quicksort(a1) followed by v followed by quicksort(a2).
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Partitioning Algorithm

We put aside for now the question of choosing the pivot and assume
it is selected in some manner.

The idea is to group the elements of the array into a group that is
smaller than the pivot and another group that is larger than the pivot.

Given a subarray with index p to r
1 First select the pivot, a[v ], p ≤ v ≤ r .
2 Swap a[v ] with the last element a[r ].
3 run a partitioning algorithm that keeps two indices i and j
4 At every iteration a[k] ≤ a[r ] for k < i and a[k] ≥ a[r ] for k > j .
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Quicksorting

Once we have a partitioning algorithm quicksort is performed as
follows

QUICKSORT(A,p,r)

q ← PARTITION(A,p,r)

QUICKSORT(A,p,q-1)

QUICKSORT(A,q+1,r)
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Partitioning Algorithm

PARTITION(a,p,r)

i ← p − 1
pivot ← a[r ] // pivot assumed in place

for j ← p to r − 1 do
if a[j] ≤ pivot then

i ← i + 1
swap(a[i ], a[j])

end

end
swap(a[i + 1], a[r ])
return i+1

We claim that the above algorithm maintains the following loop
invariant

1 If p ≤ k ≤ i then A[k] ≤ pivot
2 If i + 1 ≤ k ≤ j − 1 then A[k] > pivot
3 If k = r then A[k] = pivot
4 If j ≤ k ≤ r − 1 under consideration.
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Loop Invariant

Initialization: initially i = p − 1, j = p and since there are no values
between p and i and i + 1 and j − 1 thus conditions 1 and 2 are
satisfied trivially. Also condition 3 is satisfied by the assignment
pivot ← A[r ].

Maintenance:There are two possible outcomes when the loop is
executed

1 If A[j ] ≤ x then A[i + 1] and A[j ] are swapped and i and j are
incremented. The result satisfies conditions 1 & 2.

2 If A[j ] > x then j is incremented and this satisfies condition 2.

Termination: The algorithm terminates when j = r .

Try the algorithm on the sequence 3,5,4,1,9,5,7,8,5. Assuming the
pivot is in place (last one).
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Choosing the pivot

As we will see the performance of quicksort depends on how balanced
the partitioning is, on average.

A good strategy is to select the pivot in a uniformly random fashion.

Sometimes it is useful to choose a pivot in a deterministic fashion.

a good deterministic choice is the median of three method:
1 Given an array A to be partitioned between the indices p and r .
2 Select the three elements A[p],A[b(r − p)/2c],A[r ] and sort them.
3 The middle one is chosen as the pivot.
4 Note that in this case the middle is less than the right so the swapping

is done with element before the last.
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Median of Three
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Example

As an example, run the algorithm on the sequence 3,5,4,1,5,5,7,8,9
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Complexity

We analyze the best and worst case complexity of quicksort.

In general the cost of quicksorting an array of size n is equal to the
sum of partitioning the array plus quicksorting the two smaller
subarrays:

It takes Θ(n) to partition the array into two subarrays of size i and
n − i − 1, thus:

T (n) = T (i) + T (n − i − 1) + Θ(n)

The best case is when i = n/2 and the worst case is when i = 0.
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Worst case complexity of quicksort

The worst case occurs when one subarray is 0 and the other is n − 1
thus the recurrence becomes

T (n) = T (n − 1) + cn

We will show that T (n) = Θ(n2) by iterating the recurrence relation.

T (n) = T (n − 1) + cn

= T (n − 2) + cn + c(n − 1)

= . . .

= T (i) + c
n∑

k=i+1

k

= . . .

= T (1) + c
n∑

k=2

k = Θ(n2)
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Best case complexity of quicksort

The best case is when the problem is divided into two equal subarrays
then

T (n) = 2T (n/2) + cn

By using the Master theorem we get (a = 2, b = 2, d = 1)

T (n) = Θ(n log n)
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Average case complexity

To compute the average case complexity we assume that the pivot is
selected uniformly randomly between 0 and n − 1.

Recall that if the selected pivot has index 0 ≤ i ≤ n − 1 then the
recurrence relation of the complexity of quicksort is

T (n) = T (i) + T (n − i − 1) + c · n

Using different values of i we get

T (n) = T (0) + T (n − 1) + c · n
T (n) = T (1) + T (n − 2) + c · n
T (n) = T (2) + T (n − 3) + c · n
. . . . . .

T (n) = T (n − 2) + T (1) + c · n
T (n) = T (n − 1) + T (0) + c · n
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Adding the above and dividing by n we get the recurrence of the
average complexity

T (n) =
2

n

n−1∑
k=0

T (k) + cn

Multiplying both sides by n we get

nT (n) = 2
n−1∑
k=0

T (k) + cn2

Replacing n by n − 1 we get

(n − 1)T (n − 1) = 2
n−2∑
k=0

T (k) + c(n − 1)2
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Subtracting the above two equations we get

nT (n)− (n − 1)T (n − 1) = 2T (n − 1) + 2cn − c

Rearranging terms and dropping the c term

nT (n) = (n + 1)T (n − 1) + 2cn

Dividing both sides by n(n + 1) we get

T (n)

n + 1
=

T (n − 1)

n
+

2c

n + 1
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We iterate the above equation for different values

T (n)

n + 1
=

T (n − 1)

n
+

2c

n + 1
T (n − 1)

n
=

T (n − 2)

n − 1
+

2c

n
T (n − 2)

n − 1
=

T (n − 3)

n − 2
+

2c

n − 1

. . . = . . .

T (2)

3
=

T (1)

2
+

2c

3

By adding,term by term, the above equations we get

T (n)

n + 1
=

T (1)

2
+ c

n+1∑
k=3

1

k
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Harmonic sum

the sum
∑n

k=1
1
k is called the harmonic sum. We obtain an upper

bound as follows

1

2
+

1

3
+ . . . +

1

n + 1
≤
∫ n+1

u=2

du

u − 1

≤
∫ n

x=1

dx

x
= ln n

Therefore

T (n) ≤ (n + 1)

(
T (1)

2
+ ln n

)
= Θ(n log n)
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Merge sort

Merge sort is another divide and conquer algorithm.

The basic idea is based on the merging of two sorted lists

An input array a is divided into two parts, left and right

A recursive call is made to sort left and right independently.

The merge routine will merge the sorted lists together.

As an example suppose the input is 1,26,13,24,15,27,2,38

1,26,13,24 is sorted to get 1,13,24,26

15,27,2,38 is sorted to get 2,15,27,38

the two halves are merged to get 1,2,13,15,24,26,27,38

Next we describe the merging procedure.

Hikmat Farhat Data Structures June 20, 2018 29 / 43



Example merge sort

A B C

1 13 24 26
↑

2 15 27 38
↑ ↑

1 < 2 ⇒ copy 1 to C and increment pointer to A

1 13 24 26
↑

2 15 27 38
↑

1
↑

2 < 13 ⇒ copy 2 to C and increment pointer to B

1 13 24 26
↑

2 15 27 38
↑

1 2
↑

13 < 15 ⇒ copy 13 to C and increment pointer to A

1 13 24 26
↑

2 15 27 38
↑

1 2 13
↑

15 < 24 ⇒ copy 15 to C and increment pointer to B

1 13 24 26
↑

2 15 27 38
↑

1 2 13 15
↑

24 < 27 ⇒ copy 24 to C and increment pointer to A

1 13 24 26
↑

2 15 27 38
↑

1 2 13 15 24
↑

26 < 27 ⇒ copy 26 to C and increment pointer to A

1 13 24 26
↑

2 15 27 38
↑

1 2 13 15 24 26
↑

the remainder of B is copied to C

1 13 24 26
↑

2 15 27 38
↑

1 2 13 15 24 26 27 38
↑
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Example merge sort

A B C

1 13 24 26
↑

2 15 27 38
↑ ↑

1 < 2 ⇒ copy 1 to C and increment pointer to A

1 13 24 26
↑

2 15 27 38
↑

1
↑

2 < 13 ⇒ copy 2 to C and increment pointer to B

1 13 24 26
↑

2 15 27 38
↑

1 2
↑

13 < 15 ⇒ copy 13 to C and increment pointer to A

1 13 24 26
↑

2 15 27 38
↑

1 2 13
↑

15 < 24 ⇒ copy 15 to C and increment pointer to B

1 13 24 26
↑

2 15 27 38
↑

1 2 13 15
↑

24 < 27 ⇒ copy 24 to C and increment pointer to A

1 13 24 26
↑

2 15 27 38
↑

1 2 13 15 24
↑

26 < 27 ⇒ copy 26 to C and increment pointer to A

1 13 24 26
↑

2 15 27 38
↑

1 2 13 15 24 26
↑

the remainder of B is copied to C

1 13 24 26
↑

2 15 27 38
↑

1 2 13 15 24 26 27 38
↑
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Complexity of Merge sort

Let T (n) be the cost of mergesort for an array of size n. This is equal
to twice the cost of mergesort for n/2 plus the additional cost of
merging which is O(n).

Thus T (n) satisfies the recurrence

T (n) = 2T (n/2) + dn

this is the same recurrence for the best case (and average case) of
quicksort with the solution O(n log n).
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Heap Sort

Heap sort is based on the property of max heap.

Given an array of n elements a[0] . . . a[n − 1], we build a max heap in
O(n) operations as we have seen before.

each deleteMax operation takes O(log n).

Thus the complexity of sorting using a max heap is O(n log n).
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Example Heap Sort
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A lower bound for comparison sorting

All algorithms we have considered so far are based on comparing
numbers.

One can show that any such algorithm is Ω(n log n).

Our proof depends on what is called a decision tree.

Each node of the tree represents a set of orderings consistent with all
the decisions made so far.

After each decision the number of possibilities is reduced.
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Decision Trees

Hikmat Farhat Data Structures June 20, 2018 35 / 43



It is clear from the previous example that in the worst case, the
number of comparisons is equal to the depth of the tree.

We will show that the number of comparisons for n elements is
Ω(n log n) in the worst case.

to do so we need

Lemma: The number of leaves of a tree of depth d is at most 2d .

This is shown by induction on d . The base case is clearly true since
the root is the only leaf for d = 0.

Suppose it is true for depth d .

Any tree of depth d + 1 contains the root and two subtrees of depth
of at most d .

By the hypothesis each subtree can have at most 2d leaves for a total
of 2d + 2d = 2d+1 leaves.
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As a corollary to the previous results we have:

Lemma : The depth of a tree of L leaves is at least dlog Le,
d ≥ dlog Le .

In any comparison of n elements there are n! permutations and thus
n! leaves for the decision trees which means the decision tree has
depth of at least log n!.

log n! = log n · (n − 1) . . . 1

= log n + log(n − 1) + . . . + log 1

≥ log n + log(n − 1) + . . . + log n/2

≥ (n/2) log(n/2)

= Ω(n log n)
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Counting Sort

The previous lower bound does not mean that sorting is Ω(n log n).

It means that comparison sorting is Ω(n log n).

Some sorting algorithm do not do any comparison.

As an example we look at counting sort.

If we know that the numbers we need to sort are all less than certain
number k then we can use counting sort
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Given an array A with n elements all less or equal to some value k.

Maintain an array C such that for each C [i ] = j , j is the number of
values in A that are equal to i

for i = 0 to n − 1 do
C [A[i ]]← C [A[i ]] + 1;

end

Once we are done each value is in its ”relative position”. We scan C
again and transfer the values back to A.

offset ← 0;
for i = 0 to k do

for j = 0 to C [i ] do
A[offset]← i ;
offset ← offset + 1;

end

end
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Example Counting Sort

As an example consider the array shown in the figure below

After scanning it and putting each element in the proper place in C
we find that there are two 0’s,no 1’s,two 2’s,three 3’s, no 4’s and one
5.

Next we scan C left to right and write the appropriate value in A.

A

0

2

1

5

2

3

3

0

4

2

5

3

6

0

7

3

C 2 0 2 3 0 1
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Different implementation

Counting sort can be implemented in a more convenient manner

This is done by doing an extra pass on the array C where we add the
value of a given bucket with the previous value.

from the previous example the array C becomes

A

0

2

1

5

2

3

3

0

4

2

5

3

6

0

7

3

C 2 2 4 7 7 8
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Now the code is simplified

for i = n − 1 to 0 do
val ← A[i ];
C [val ]← C [val ]− 1;
index ← C [val ];
B[index ]← val ;

end
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Radix sort

What if the maximal value is large? can we still use counting sort?

It turns out that we can use multiple passes of counting sort in such
a situation.

The basic idea is to do counting sort on each digit separately starting
with the least significant digit.
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