Data Structures _____ Graphs

Hikmat Farhat

Hikmat Farhat Data Structures

・ロン ・四と ・ヨン ・ヨン

Introduction

- ▶ Note Most Figures are from Cormen et. al.
- A graph G = (V, E) is a set of vertices V and a set of edges E.
- Each element in E is a pair (v, w) with $v, w \in V$.
- If the pairs are ordered then the graph is directed (sometimes called digraph).
- if $(v, w) \in E$ then we say w is **adjacent** to v
- Usually we associate a **weight** (or **cost**) with each edge.
- A path is a sequence of vertices w₁,..., w_n such that (w_i, w_{i+1}) ∈ E.
- ► the **length** of a path is the number of edges in it

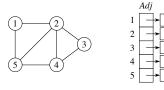
- A path is said to be simple if all vertices, except possibly the first and last, are distinct.
- A cycle is a path such that $w_1 = w_n$.
- in an undirected graph we require that the edges be distinct to have a cycle.
- ▶ for example v, w, v should not be considered a cycle since (v, w) and (w, v) are the same edge.
- A graph is said to be **acyclic** if it contains no cycles.
- ► A graph in which from every vertex there is path to every other vertex is called **connected**.

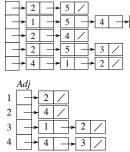
イロト イヨト イヨト イヨト

Graph representation

- There are essentially two ways to represent a graph
 - Adjacency matrix.
 - Adjacency list.
- ► Most of the time adjacency list is better since it is O(|E| + |V|) in memory requirement.
- ► This is the preferred representation when the graph is sparse, $|E| \ll |V^2|$.
- ► The adjacency matrix is O(|V²|) in memory requirement and it is preferred when the graph is **dense**, |E|≈|V²|.
- In the adjacency matrix representation it is much faster to check whether two vertices are adjacent.

Examples





3

< □ > < □ > < □ > < □ > < □ > .

Topological Sort

- Topological sort is an ordering of **directed acyclic** graphs.
- The idea is that if there is a path from node u to node v then v appears after u in the ordering.
- As an example, we use topological sort to list the valid sequence of courses that are consistent with prerequisites.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

- A simple algorithm to perform topological sort is to find a node with no incoming edges.
- ► We can print that edge then follow the adjacency list.
- Define the **indegree** of a node v as the number of edges (u, v).
- Suppose that for each node in the graph we have the indegree and the adjacency list then a simple algorithm would be

```
Graphs
Representation
topological sort
BFS and DFS
MST
Connected Components
Shortest Paths
```

1 for i = 1 to n do

```
u=findIndegreeZero()
```

3 print u

2

5

```
4 foreach v \in Adj[u] do
```

```
v.indegree \leftarrow v.indegree - 1
```

- ► The complexity of the above algorithm is O(|V|²) because findIndegreeZero has to scan all nodes every time which is O(|v|)
- since we do it O(|V|) times then the total is $O(|V|^2)$.
- Not counting the cost of computing the indegree of all nodes initially.

|田・ (日) (日)

Breadth First Search

- As we will see later many algorithms depend on breadth first search (BFS).
- ▶ Given a graph G = (V, E) and a source node s, BFS systematically "discovers" all vertices that can be reached from s.
- It is breadth first because all vertices at distance k from s are discovered before any vertex at distance k + 1 is discovered.
- BFS works by coloring nodes with two different colors: white and black.
- A white node means it has not been discovered. Black means it has been discovered.

イロト イヨト イヨト イヨト

- The algorithm starts by coloring all nodes white except the source s is colored black.
- ▶ It then proceed with the discovery of all of *s* neighbors.
- Given a node v
 - v.d is the distance (number of links) from s to v.
 - adj[v] is the list of v's neighbors.
 - ▶ *v*.*p* is the predecessor of *v* in the path from *s* to *v*.

- 4 同 ト 4 臣 ト 4 臣 ト

```
Graphs
Representation
topological sort
BFS and DFS
MST
Connected Components
Shortest Paths
```

BFS Initialization

```
1 BFS(G,v)

2 foreach v \in V - \{s\} do

3 | v.color \leftarrow WHITE

4 | v.d \leftarrow 0

5 | v.p \leftarrow NULL

6 s.color \leftarrow BLACK

7 s.d \leftarrow 0

8 s.p \leftarrow NULL

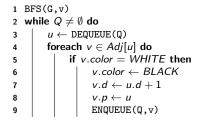
9 Q \leftarrow \emptyset

10 ENQUEUE(Q,s)
```

< 🗇 > < 🖃 >

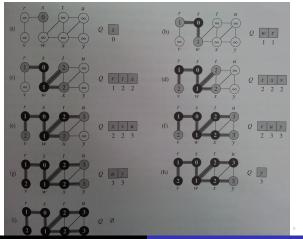
- < ∃ >

BFS Pseudo Code



<ロ> (日) (日) (日) (日) (日)

Example



Hikmat Farhat

Data Structures

≣≯

Complexity of BFS

- To analyze the complexity of BFS first we note that after initialization no vertex color is set to white.
- The above implies that each vertex is enqueued (and dequeued) only once.
- Since the enqueue/dequeue operations are O(1) then for all nodes it is O(|V|).
- ▶ When a vertex is dequeued we scan the adjacency list and the sum of all adjacency list is just |E|
- Therefore the total cost of BFS is O(|V| + |E|).

イロト イヨト イヨト イヨト

Shortest Paths

- Given a graph G = (V, E) and a source node s ∈ V. We define the shortest-path distance δ(s, v) from s to v ∈ V to be the minimum number of edges in any path from s to v.
- ► BFS not only discovers every vertex v ∈ V reachable from a source s
- But also $v.d = \delta(s, v)$ and
- The shortest-path from s to v is composed of the shortest-path from s to v.p followed by the edge (v.p, v).
- The above observation allows us to determine not only the cost δ(s, v) but also the exact path by iterating backwards over v.p.

イロト イヨト イヨト イヨト

Depth First Search

- In a depth first search DFS edges are explored out of the most recently discovered node.
- ► As the name implies we go "deeper" whenever it is possible.
- When all the neighbors of a node v are discovered we "backtrack" to the parent of v and explore other nodes.
- When we are done discovering the descendants of some source s and some nodes remain undiscovered then one of them is selected as source and the process is repeated.
- When the algorithm is done with a certain node, it records the discovery time and finishing time

- ∢ ≣ ▶

DFS Pseudo Code

1 DFS(G)

```
4 v.p \leftarrow NULL
```

- **5** time $\leftarrow 0$
- 6 foreach $v \in V$ do

7 **if**
$$v.color = WHITE$$
 then

8 DFS-VISIT(v)

< ≣⇒

æ

Image: A □ > A

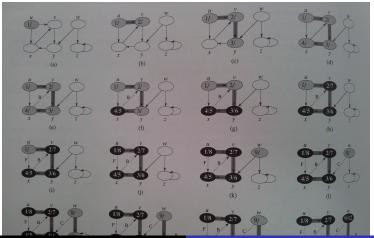
DFS-VISIT Pseudo Code

- 1 DFS-VISIT(u)
- 2 $u.color \leftarrow GRAY$
- $\textbf{3} \ \textit{time} \leftarrow \textit{time} + 1$
- 4 $u.d \leftarrow time$
- 5 foreach $v \in adj[u]$ do
- 6 **if** v.color = WHITE then
- 7 DFS-VISIT(v)
- 8 $u.color \leftarrow BLACK$
- 9 times \leftarrow time +1
- 10 $u.f \leftarrow time$

<**●** ► < **■** ►

- ∢ ≣ ▶

DFS Example



Hikmat Farhat

Data Structures

Complexity

- The initialization to WHITE is O(|V|)
- Then DFS is called O(|V|) times.
- Each time DFS-VISIT is called **only once** for each node because it is called on WHITE nodes only.
- The cost of DFS-VISIT(v) is O(|adj[v]|).
- Thus the cost of all calls to DFS-VISIT is

$$\sum_{v \in V} |adj[v]| = O(|E|)$$

Therefore the total cost is

$$O(|E|+|V|)$$

Topological Sort Revisited

- We can implement an efficient topological sort using DFS as follows
 - 1. Call DFS on the graph.
 - 2. Every time a node is finished add it to the front of a linked list
 - 3. When done the resulting list is the topological sort.

A (1) > (1) > (1)

DFS Topological Sort Example

Hikmat Farhat Data Structures

Transitive Closure

- ▶ Given a graph G =< V, E > the transitive closure is a two dimensional array (a relation) tc[][] such that t[u][v] = 1 if v can be reached from u and 0 otherwise.
- The transitive closure closure can be computed with a slight modification of DFS shown below.

Graphs	
Representation	
topological sort	
BFS and DFS	
MST	
Connected Components	
Shortest Paths	

```
1 foreach s \in V do

2 | SEARCH(s,s);

3 SEARCH(s,u)

4 tc[s][u] \leftarrow 1

5 foreach v \in adj[u] do

6 | if tc[s][v] = 0 then

7 | SEARCH(s,v)
```

Minimum Spanning Trees

- In many application, when the system is represented by a graph we need to find a Minimum Spanning Tree (MST).
- As the name suggest this collection of nodes is
 - 1. A tree.
 - 2. **Spanning**. meaning includes all the nodes of the graph.
 - 3. It has the **least total cost** of all such trees.
- First we need to introduce some preliminary operations.

- A 同 ト - A 三 ト - A 三 ト

Disjoint Sets Data Structures

- We introduce some operations on disjoint sets. Any element is contained in only one set.
- ► MAKE-SET(x): create a new set whose only member is x.
- FIND-SET(x):returns a pointer to the representative of the set containing x.
- UNION(x,y):combine the sets containing x and y into a new set.

- 4 同 ト - 4 三 ト

Kruskal's Algorithm

- Kruskal's algorithm computes a MST of a given graph.
- Every edge has an associated weight or cost.
- The idea is to build the MST by adding an edge every iteration.
- The edges are considered by increasing order.
- An edge is added if it doesn't create a cycle.
- The algorithm stops when there are no more edges to consider.

▲ 同 ▶ | ▲ 臣 ▶

Graphs	
Representation	
topological sort	
BFS and DFS	
MST	
Connected Components	
Shortest Paths	

```
1 MST-KRUSKAL(G)

2 A \leftarrow \emptyset

3 foreach v \in V do

4 \mid MAKE-SET(v)

5 F \leftarrow SORT-EDGES(E)

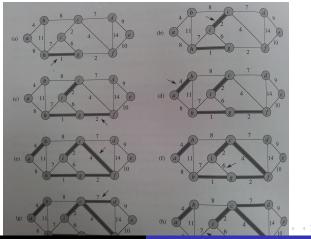
6 foreach (u, v) \in F do

7 \mid if FIND-SET(u) \neq FIND-SET(v) then

8 \mid A \leftarrow A \cup \{(u, v)\}

9 \mid UNION(u, v)
```

Example

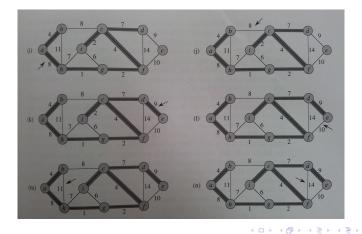


Hikmat Farhat

Data Structures

500

Example



Hikmat Farhat Data Structures

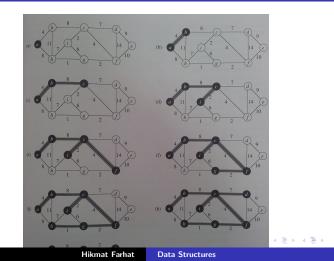
```
Graphs
Representation
topological sort
BFS and DFS
MST
Connected Components
Shortest Paths
```

Prim's Algorithm

```
MST-PRIM(G,r)
 1
 2 foreach v \in V do
 3
         v.key \leftarrow \infty
        v.p \leftarrow NULL
 4
   r.key \leftarrow 0
 5
    Q \leftarrow V
 6
    while Q \neq \emptyset do
 7
 8
          u \leftarrow \text{DELETE-MIN}(Q)
          foreach v \in Adj[u] do
 9
                 if w(u, v) < v.key and v \in Q then
10
                    v.key \leftarrow w(u,v)
v.p \leftarrow u
11
12
```

イロト イヨト イヨト イヨト

Example



Why does it work?

- Both Kruskal's and Prim's algorithms are special cases of a general method to obtain a minimum spanning tree.
- The basic idea is based on the following:
- Maintain a set of edges A.
- ► Before every iteration *A* is a subset of some minimum spanning tree.
- At each step we add an edge to A such that A is still a subset of some MST.
- An edge having that property is called **safe** for *A*.

★週 ▶ ★ 臣 ▶ ★ 臣 ▶

Graphs	
Representation	
topological sort	
BFS and DFS	
MST	
Connected Components	
Shortest Paths	

- 1 MST(G)
- $2 A \leftarrow \emptyset$
- 3 while A is not MST do
- find edge (u, v) safe for A $A \leftarrow A \cup \{(u, v)\}$ 4
- 5
- 6 return A
 - The above algorithm looks easy.
 - But how do we find a safe edge?

Some Definitions

- Let G = (V, E) be a graph with some real-valued weight function w : E → R.
- A cut (S, V S) of the graph G is a partition of V.
- We say a cut (S, V − S) respects A ⊆ E if no edge in A crosses the cut.
- An edge is said to be a **light edge** crossing a cut if its weight is the minimum of any edge crossing the cut.

イロト イヨト イヨト イヨト

This is why it works

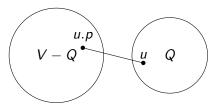
The reason why both algorithms work is the following theorem

Theorem

Let A be a set of edges included in some minimum spanning tree, (S, V - S) a cut that respects A, and (u, v) be a light edge crossing (S, V - S). Then (u, v) is safe for A.

- A 🗇 N - A 🖻 N - A 🖻 N

Correctness of Prim's Algorithm



- ► At the beginning of every iteration (except the first) Prim's algorithm starts by removing u where u.key is minimum. This means that (u.p, u) is a light edge for the cut (Q, V Q)
- Therefore Prim's algorithm is correct.

Correctness of Kruskal's Algorithm

Prior to every iteration of Kruskal's algorithm we have

- 1. A forest (a collection of trees) $G_A = (V, A)$. (initially is A is empty)
- 2. Select an edge $(u, v) \in E A$ with

2.1 w(u, v) is minimal.

2.2 $u \in T_u$ and $v \notin T_u$ where T_u is a tree in G_A that contains u.

3. From the above we have that: $(T_u, V - T_u)$ is a cut that respects A and (u, v) is a light edge crossing that cut.

From the theorem we know that (u, v) is a safe edge for A.

Complexity

- ► Kruskal: we use the union find operations we learned in the beginning of the semester. Let | V |= n and | E |= m.
- Recall that we use an array *id* to specify the parent of node in the (logical) tree that represents a given group.
- ► e.g. node *id*[*i*] is the parent of *i*. Initially each node is its own parent: *id*[*i*] = *i* thus the first **for** loop is Θ(*n*).
- Sorting is $\Theta(m \log m)$.
- In our implementation, Union is Θ(1) and FIND-SET is Θ(log n). Therefore the foreach loop is Θ(m log n).
- Adding all the contributions we get: $\Theta(n + m \log m + m \log n)$.

イロン 不同と 不同と 不同と

Strongly Connected Components

- Given a graph G =< V, E > we say that the set of vertices C ⊆ V is a strongly connected component if
- for every pair $u, v \in C$ we have: $u \rightsquigarrow v$ and $v \rightsquigarrow u$
- We can print all strongly connected components in a graph by doing DFS twice. The first over the graph and the second over the transpose of the graph.

イロト イポト イヨト イヨト

Kosaraju Algorithm

```
1 foreach v \in V do
```

2 if
$$v.color = WHITE$$
 then

```
DFS-VISIT(v)
3
```

```
4 Reverse all the edges of G and reset all colors
```

```
5 foreach v \in V in decreasing finish time do
```

```
6
```

```
7
```

< ≣ >

Single Source Shortest Path

- ► Given a graph G = (V, E) with a real-valued weight function w we often as the question:
- What is the minimal cost (shortest) path from s ∈ V to all other vertices of the graph.
- We will look at two algorithms that perform that taks
 - 1. Bellman-Ford.
 - 2. Dijkstra.
- First we need some definitions and theorems.

- Given a graph G = (V, E) and a real-valued weight function w : E → R.
- weight of path $p = (v_0, \ldots, v_k)$ sometimes written as

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

• The shortest path cost δ

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\leadsto} v\} & \text{ if there is a path from u to } v \\ \infty & \text{ otherwise} \end{cases}$$

< 4 ₽ > < 2 >

∃ >

Properties of Shortest Path

- ▶ Subpaths of shortest path are subpath: Given a graph G = (V, E) and weight function $w : E \to \mathbf{R}$ let $p = (v_1, \ldots, v_k)$ be a shortest path from v_1 to v_k then for any $1 \le i, j \le k, p_{ij} = (v_i, \ldots, v_j)$ is a shortest path from v_i to v_j .
- ▶ **Proof**: we write $v_1 \stackrel{p}{\rightsquigarrow} v_k$ which can be decomposed into $v_1 \stackrel{p_i}{\rightsquigarrow} v_i \stackrel{p_j}{\rightsquigarrow} v_j \stackrel{p_j}{\rightsquigarrow} v_k$
- Then w(p) = w(p_i) + w(p_{ij}) + w(p_j) so if p_{ij} is not the shortest path then ∃p'_{ij} with w(p'_{ij}) < w(p_{ij}) then we can write
- w(p') = w(p_i) + w(p'_{ij}) + w(p_j) < w(p) a contradiction since p is the shortest path from v₁ to v_k.

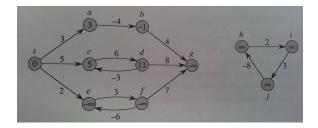
(ロ) (同) (E) (E) (E)

Negative weight

- Even if a path contains edges with negative weight a shortest path can still be defined.
- It is undefined if the path contains a negative weight cycle.
- This is because we can "cross" the cycle as many times as we want, every time lower the cost.
- Therefore in the case when there is a negative cycle on a path from u to v then we set δ(u, v) = −∞ where δ(a, b) is the shortest path cost from a to b.

イロト イヨト イヨト イヨト

Example of Negative Cycles



•
$$\delta(s, a) = 3, \delta(s, b) = -1, \delta(s, c) = 5, \delta(s, d) = 11.$$

Hikmat Farhat

 \blacktriangleright (e, f) form a negative cycle therefore any node reachable from s through this cycle has $\delta = -\infty$ $\delta(s, e) = \delta(s, f) = \delta(s, g) = -\infty$ ▶ *h*, *i*, *j* are not reachable from *s* thus Image: A math $\delta(s, h) - \delta(s, i) - \delta(s, i)$ Data Structures

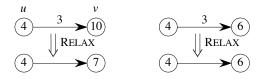
Representation of Shortest Paths

- In all the algorithms that we will deal with, we maintain for every vertex v its predecessor v.p (which could be NULL)
- ► At **termination** *v*.*p* will be the predecessor of *v* on a shortest path from source *s* to *v*.
- We also maintain a value v.d which at termination will be the value of the shortest path cost from source s to v.
- During the execution of the algorithm v.d will be an upper bound on the value of the shortest path cost.

・ロト ・回ト ・ヨト ・ヨト

Relaxation

- Relaxing an edge (u, v) means testing if we can improve the shortest path cost of v by using the edge (u, v).
- If we can then we update v.d and v.p.



- In the figure to the left the cost of v was changed to the new cost (7) whereas to the right it was not changed since the new cost (7) is bigger than the current (6).
- ▶ What is NOT shown is the change to *v*.*p* in the first case.

Initialization and Relaxation

- ► Initially all vertices (except the source) have cost ∞ and no predecessors (including the source).
- 1 INITIALIZE(G,s)
- 2 foreach $v \in V$ do
- 5 $s.d \leftarrow 0$

1 RELAX (u, v)2 if v.d > u.d + w(u, v) then 3 $\begin{vmatrix} v.d \leftarrow u.d + w(u, v) \\ v.p \leftarrow u \end{vmatrix}$

Properties of Relaxation

Relaxation has the following properties

Path relaxation If $p = (v_0, ..., v_k)$ is the shortest path from $s = v_0$ to $v = v_k$ and the edges of p are relaxed in the order $(v_0, v_1), (v_1, v_2), ..., (v_{k-1}, v_k)$ then $v.d = \delta(s, v)$. (note that this is true regardless of any other relaxations)

Predecessor subgraph If $v.d = \delta(s, v)$ for all $v \in V$ then the predecessor subgraph is a shortest-paths tree rooted at s.

Upper Bound We always have $v.d \ge \delta(s, v)$ and once $v.d = \delta(s, v)$ it never changes.

▲圖▶ ▲理▶ ▲理▶

Bellman-Ford Algorithm

- The Bellman-Ford algorithm computes the shortest path from a given source to all other nodes in the graph.
- It works with negative weights.
- It can detect negative cycles.
- It uses the previously defined procedure RELAX to compute the shortest path.

A (1) > (1) > (1)

Bellman-Ford Pseudo Code

```
BELLMAN-FORD(G,s);
1
2 INITIALIZE(G,s)
3 for i \leftarrow 1 To V - 1 do
      foreach (u, v) \in E do
4
          RELAX(u,v)
5
6
  foreach (u, v) \in E do
7
      if v.d > u.d + w(u, v) then
8
          return FALSE
9
10 return TRUE
```

A ►

Example

Hikmat Farhat Data Structures

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Correctness of Bellman-Ford

- If the graph has no negative cycles then the shortest path cannot contain a cycle since remove it "shortens" (at least the same for 0 cost cycle) the path
- ► Therefore if we have n vertices a shortest path cannot visit more that n of them and thus it contains at most n - 1 edges.
- ▶ Bellman-Ford is iterated *n* − 1 times and each time ALL the edges are relaxed.
- So if p₁,... p_k is a shortest path, iteration *i* relaxes all edges INCLUDING p_{i−1}, p_i.
- ► This means among ALL relaxations the edges of the path are relaxed in the order (p₁, p₂),..., (p_{k-1}, p_k)

• By the path-relaxation property $d[p_k] = \delta(s, p_k)$

Complexity of Bellman-Ford

- The initialization is O(|V|).
- the double loop is $O(|V| \cdot |E|)$.
- Therefore the total cost of the Bellman-Ford is $O(|V| \cdot |E|)$.

イロト イヨト イヨト イヨト

æ

Dijkstra's Algorithm

- Dijkstra's algorithm is another single source shortest path.
- It works when all weights are positive.
- We will see that it is faster than the Bellman-Ford algorithm.
- It maintains a set S of nodes whose shortest paths have been determined
- All other nodes are kept in a min-priority queue to keep track of the next node to process.

(4月) (日)

Dijkstra Pseudo Code

```
1 DIJKSTRA(G,s);

2 INITIALIZE(G,s)

3 S \leftarrow \emptyset

4 Q \leftarrow V

5 while Q \neq \emptyset do

6 | u \leftarrow \text{EXTRACT-MIN}(Q)

7 | S \leftarrow S \cup \{u\}

8 | foreach v \in Adj[u] do

9 | | RELAX(u,v)
```

< A > < 3

∢ ≣⇒

Example

Hikmat Farhat Data Structures

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Complexity

- The running time of Dijkstra's algorithm depends on the implementation of the queue.
- ► Using a min-heap on a sparse graph gives complexity of O((V + E) log V).
- ► This is because the while loop executes V times. The extract-min is O(log V) for a cost of V log V. The relax includes an key update which means log V. Since each edge is relaxed at most once then the total is E with a cost of E log V.

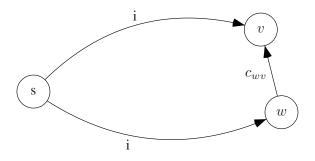
イロン イヨン イヨン イヨン

Bellman-Ford Revisited

- We will take a look at a variation of the Bellman-Ford discussed earlier.
- ► The basic idea is that with n nodes the shortest path from any two nodes can have at most n - 1 edges.
- Let s be the source node. We need to compute the shortest path from s to all other nodes.
- For any v let d[i, v] be the cost of the shortest path from s to v that contains at most i edges. Then (see figure)

$$d[i+1, v] = \min(d[i, v], \min_{w \in V}(d[i, w] + c_{wv}))$$

イロン イ団 とくほと くほとう



< □ > < □ > < □ > < □ > < □ > < □ > = □

- From the previous information we have
- ► Since we are guaranteed that the shortest path is at most n-1 edges the above recursive equation gives us an algorithm to compute the shortest path by iterating of the length.
- ► Note that the values for step i is saved to be used later, namely in step i + 1.
- This strategy of saving values instead of recomputing is called Dynamic Programming.

Graphs	
Representation	
topological sort	
BFS and DFS	
MST	
Connected Components	
Shortest Paths	

1 BELLMAN-FORD(G,s);
2 foreach
$$v \in V$$
 do
3 $| d[0, v] = \infty$
4 $d[0, s] = 0$
5 for $i = 1, ..., n$ do
6 $| d[i, v] = \min(d[i-1, v], \min_{w \in V}(d[i-1, w] + c_{vw}))$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

Eulerian cycles

- A Eulerian path in a graph is a path from vertex u to vertex v that uses every edge exactly once.
- A Eulerian cycle is a closed (i.e. u = v Eulerian path)
- ► Formally, a path v₁,..., v_k in a graph G = (V, E) is said to be Eulerian iff
 - 1. $\forall e \in E, \exists i \text{ such that } (v_{i-1}, v_i) = e.$
 - 2. $\forall i, j \text{ we have } i \neq j \Rightarrow (v_{i-1}, v_i) \neq (v_{j-1}, v_j).$

Theorem

A graph G = (V, E) has a Eulerian cycle iff every vertex has even degree

< ロ > < 回 > < 回 > < 回 > < 回 > <

2

Proof.

- (⇒) Assume that a Eulerian cycle, v₁..., v_{i-1}, v_i, v_{i+1},..., v_k exists. Consider an arbitrary vertex v_i ≠ 1, k. that occurs *I* times in the path. Every time v_i occurs it is of the form v_{i-1}, v_i, v_{i+1} where (v_{i-1}, v_i) ∈ E and (v_i, v_{i+1}) ∈ E which means for every occurrence of v_i in the path, two edges (distinct by definition) are "used". The same reasoning applies to v₁ and v_k since v₁ = v_k.
- ► (⇐)Assume that every vertex has an even degree. We construct a Eulerian cycle as follows.
 - Start at an arbitrary vertex u, and choose an unused edge every time until you get back to u and there are no more unused edges to choose from.
 - ► Next we select a vertex v included in the previous "walk" and repeat until we get back to v.

- We still need to prove that when starting at vertex u and choosing previously unused edges we get back to u.
- By way of contradiction assume that starting with vertex *u* we get "stuck" in vertex *v* ≠ *u*. Let the followed path be *u*, *x*₁,...,*x_k*, *v*.
- Every time v is visited (except the last) two edges of v are used therefore an odd number of edges of v are used which is a contradiction because every vertex was assumed to have an even number of edges.

イロン イヨン イヨン イヨン