
Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Data Structures
Graphs

Hikmat Farhat

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Introduction

I Note Most Figures are from Cormen et. al.

I A graph G = (V ,E) is a set of vertices V and a set of edges
E .

I Each element in E is a pair (v ,w) with v ,w ∈ V .

I If the pairs are ordered then the graph is directed
(sometimes called digraph).

I if (v ,w) ∈ E then we say w is adjacent to v

I Usually we associate a weight (or cost) with each edge.

I A path is a sequence of vertices w1, . . . ,wn such that
(wi ,wi+1) ∈ E .

I the length of a path is the number of edges in it

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

I A path is said to be simple if all vertices, except possibly the
first and last, are distinct.

I A cycle is a path such that w1 = wn.

I in an undirected graph we require that the edges be distinct
to have a cycle.

I for example v ,w , v should not be considered a cycle since
(v ,w) and (w , v) are the same edge.

I A graph is said to be acyclic if it contains no cycles.

I A graph in which from every vertex there is path to every
other vertex is called connected.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Graph representation

I There are essentially two ways to represent a graph
I Adjacency matrix.
I Adjacency list.

I Most of the time adjacency list is better since it is
O(|E| + |V |) in memory requirement.

I This is the preferred representation when the graph is sparse,
|E|�|V 2|.

I The adjacency matrix is O(|V 2|) in memory requirement and
it is preferred when the graph is dense, |E|≈|V 2|.

I In the adjacency matrix representation it is much faster to
check whether two vertices are adjacent.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Examples

Lecture Notes for Chapter 22:
Elementary Graph Algorithms

Graph representation

Given graph G = (V, E).
• May be either directed or undirected.
• Two common ways to represent for algorithms:
1. Adjacency lists.
2. Adjacency matrix.

When expressing the running time of an algorithm, itís often in terms of both|V |
and |E |. In asymptotic notationóand only in asymptotic notationóweíll drop the
cardinality. Example: O(V + E).
[The introduction to Part VI talks more about this.]

Adjacency lists

Array Adj of |V | lists, one per vertex.
Vertex uís list has all vertices v such that (u, v) ∈ E . (Works for both directed and
undirected graphs.)

Example: For an undirected graph:

1 2

3

45

1
2
3
4
5

2 5
1
2
2
4 1 2

5 3
4
5

Adj

4 3

If edges have weights, can put the weights in the lists.
Weight: w : E → R
Weíll use weights later on for spanning trees and shortest paths.
Space: !(V + E).
Time: to list all vertices adjacent to u: !(degree(u)).
Time: to determine if (u, v) ∈ E : O(degree(u)).

22-2 Lecture Notes for Chapter 22: Elementary Graph Algorithms

Example: For a directed graph:

1 2

3

1
2
3
4

2
4
1 2

4

Adj

34

Same asymptotic space and time.

Adjacency matrix

|V |× |V | matrix A = (aij)

aij =
{
1 if (i, j) ∈ E ,
0 otherwise .

1 0 0 1
0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

0
1
0
0
1

1 2 3 4 5
1
2
3
4
5

1 0 0
0 0 1
1 0 0
0 1 1

0
0
1
0

1 2 3 4
1
2
3
4

Space: !(V 2).
Time: to list all vertices adjacent to u: !(V).
Time: to determine if (u, v) ∈ E : !(1).
Can store weights instead of bits for weighted graph.
Weíll use both representations in these lecture notes.

Breadth-first search

Input: Graph G = (V, E), either directed or undirected, and source vertex s ∈ V .
Output: d[v] = distance (smallest # of edges) from s to v, for all v ∈ V .
In book, also π [v] = u such that (u, v) is last edge on shortest path s ! v.
• u is vís predecessor.
• set of edges {(π [v], v) : v #= s} forms a tree.

Later, weíll see a generalization of breadth-first search, with edge weights. For
now, weíll keep it simple.

• Compute only d[v], not π [v]. [See book for π [v].]
• Omitting colors of vertices. [Used in book to reason about the algorithm. Weíll
skip them here.]

22-2 Lecture Notes for Chapter 22: Elementary Graph Algorithms

Example: For a directed graph:

1 2

3

1
2
3
4

2
4
1 2

4

Adj

34

Same asymptotic space and time.

Adjacency matrix

|V |× |V | matrix A = (aij)

aij =
{
1 if (i, j) ∈ E ,
0 otherwise .

1 0 0 1
0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

0
1
0
0
1

1 2 3 4 5
1
2
3
4
5

1 0 0
0 0 1
1 0 0
0 1 1

0
0
1
0

1 2 3 4
1
2
3
4

Space: !(V 2).
Time: to list all vertices adjacent to u: !(V).
Time: to determine if (u, v) ∈ E : !(1).
Can store weights instead of bits for weighted graph.
Weíll use both representations in these lecture notes.

Breadth-first search

Input: Graph G = (V, E), either directed or undirected, and source vertex s ∈ V .
Output: d[v] = distance (smallest # of edges) from s to v, for all v ∈ V .
In book, also π [v] = u such that (u, v) is last edge on shortest path s ! v.
• u is vís predecessor.
• set of edges {(π [v], v) : v #= s} forms a tree.

Later, weíll see a generalization of breadth-first search, with edge weights. For
now, weíll keep it simple.

• Compute only d[v], not π [v]. [See book for π [v].]
• Omitting colors of vertices. [Used in book to reason about the algorithm. Weíll
skip them here.]

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Topological Sort

I Topological sort is an ordering of directed acyclic graphs.

I The idea is that if there is a path from node u to node v then
v appears after u in the ordering.

I As an example, we use topological sort to list the valid
sequence of courses that are consistent with prerequisites.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Example

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

I A simple algorithm to perform topological sort is to find a
node with no incoming edges.

I We can print that edge then follow the adjacency list.

I Define the indegree of a node v as the number of edges
(u, v).

I Suppose that for each node in the graph we have the indegree
and the adjacency list then a simple algorithm would be

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

1 for i = 1 to n do
2 u=findIndegreeZero()
3 print u
4 foreach v ∈ Adj [u] do
5 v .indegree ← v .indegree − 1

I The complexity of the above algorithm is O(|V |2) because
findIndegreeZero has to scan all nodes every time which is
O(|v|)

I since we do it O(|V |)) times then the total is O(|V |2).

I Not counting the cost of computing the indegree of all nodes
initially.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Breadth First Search

I As we will see later many algorithms depend on breadth first
search (BFS).

I Given a graph G = (V ,E) and a source node s, BFS
systematically ”discovers” all vertices that can be reached
from s.

I It is breadth first because all vertices at distance k from s are
discovered before any vertex at distance k + 1 is discovered.

I BFS works by coloring nodes with two different colors: white
and black.

I A white node means it has not been discovered. Black means
it has been discovered.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

I The algorithm starts by coloring all nodes white except the
source s is colored black.

I It then proceed with the discovery of all of s neighbors.
I Given a node v

I v .d is the distance (number of links) from s to v .
I adj [v] is the list of v ’s neighbors.
I v .p is the predecessor of v in the path from s to v .

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

BFS Initialization

1 BFS(G,v)

2 foreach v ∈ V − {s} do
3 v .color ←WHITE
4 v .d ← 0
5 v .p ← NULL

6 s.color ← BLACK
7 s.d ← 0
8 s.p ← NULL
9 Q ← ∅

10 ENQUEUE(Q,s)

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

BFS Pseudo Code

1 BFS(G,v)

2 while Q 6= ∅ do
3 u ← DEQUEUE(Q)

4 foreach v ∈ Adj[u] do
5 if v .color = WHITE then
6 v .color ← BLACK
7 v .d ← u.d + 1
8 v .p ← u
9 ENQUEUE(Q,v)

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Example

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Complexity of BFS

I To analyze the complexity of BFS first we note that after
initialization no vertex color is set to white.

I The above implies that each vertex is enqueued (and
dequeued) only once.

I Since the enqueue/dequeue operations are O(1) then for all
nodes it is O(|V |).

I When a vertex is dequeued we scan the adjacency list and the
sum of all adjacency list is just |E|

I Therefore the total cost of BFS is O(|V | + |E|).

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Shortest Paths

I Given a graph G = (V ,E) and a source node s ∈ V . We
define the shortest-path distance δ(s, v) from s to v ∈ V to
be the minimum number of edges in any path from s to v .

I BFS not only discovers every vertex v ∈ V reachable from a
source s

I But also v .d = δ(s, v) and

I The shortest-path from s to v is composed of the
shortest-path from s to v .p followed by the edge (v .p, v).

I The above observation allows us to determine not only the
cost δ(s, v) but also the exact path by iterating backwards
over v .p.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Depth First Search

I In a depth first search DFS edges are explored out of the
most recently discovered node.

I As the name implies we go ”deeper” whenever it is possible.

I When all the neighbors of a node v are discovered we
”backtrack” to the parent of v and explore other nodes.

I When we are done discovering the descendants of some source
s and some nodes remain undiscovered then one of them is
selected as source and the process is repeated.

I When the algorithm is done with a certain node, it records the
discovery time and finishing time

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

DFS Pseudo Code

1 DFS(G)

2 foreach v ∈ V do
3 v .color ←WHITE
4 v .p ← NULL

5 time ← 0
6 foreach v ∈ V do
7 if v .color = WHITE then
8 DFS-VISIT(v)

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

DFS-VISIT Pseudo Code

1 DFS-VISIT(u)

2 u.color ← GRAY
3 time ← time + 1
4 u.d ← time
5 foreach v ∈ adj [u] do
6 if v .color = WHITE then
7 DFS-VISIT(v)

8 u.color ← BLACK
9 times ← time + 1

10 u.f ← time

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

DFS Example

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Complexity

I The initialization to WHITE is O(|V |)
I Then DFS is called O(|V |) times.

I Each time DFS-VISIT is called only once for each node
because it is called on WHITE nodes only.

I The cost of DFS-VISIT(v) is O(|adj [v]|).

I Thus the cost of all calls to DFS-VISIT is∑
v∈V
|adj [v]|= O(|E|)

I Therefore the total cost is

O(|E| + |V |)

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Topological Sort Revisited

I We can implement an efficient topological sort using DFS as
follows

1. Call DFS on the graph.
2. Every time a node is finished add it to the front of a linked list
3. When done the resulting list is the topological sort.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

DFS Topological Sort Example

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Transitive Closure

I Given a graph G =< V ,E > the transitive closure is a two
dimensional array (a relation) tc[][] such that t[u][v] = 1 if v
can be reached from u and 0 otherwise.

I The transitive closure closure can be computed with a slight
modification of DFS shown below.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

1 foreach s ∈ V do
2 SEARCH(s,s);
3 SEARCH(s,u)

4 tc[s][u]← 1
5 foreach v ∈ adj [u] do
6 if tc[s][v] = 0 then
7 SEARCH(s,v)

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Minimum Spanning Trees

I In many application, when the system is represented by a
graph we need to find a Minimum Spanning Tree (MST).

I As the name suggest this collection of nodes is

1. A tree.
2. Spanning. meaning includes all the nodes of the graph.
3. It has the least total cost of all such trees.

I First we need to introduce some preliminary operations.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Disjoint Sets Data Structures

I We introduce some operations on disjoint sets. Any element
is contained in only one set.

I MAKE-SET(x): create a new set whose only member is x .

I FIND-SET(x):returns a pointer to the representative of the
set containing x .

I UNION(x ,y):combine the sets containing x and y into a new
set.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Kruskal’s Algorithm

I Kruskal’s algorithm computes a MST of a given graph.

I Every edge has an associated weight or cost.

I The idea is to build the MST by adding an edge every
iteration.

I The edges are considered by increasing order.

I An edge is added if it doesn’t create a cycle.

I The algorithm stops when there are no more edges to consider.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

1 MST-KRUSKAL(G)

2 A← ∅
3 foreach v ∈ V do
4 MAKE-SET(v)

5 F ← SORT-EDGES(E)

6 foreach (u, v) ∈ F do
7 if FIND-SET(u) 6= FIND-SET(v) then
8 A← A ∪ {(u, v)}
9 UNION(u, v)

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Example

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Example

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Prim’s Algorithm

1 MST-PRIM(G,r)

2 foreach v ∈ V do
3 v .key ←∞
4 v .p ← NULL

5 r .key ← 0
6 Q ← V
7 while Q 6= ∅ do
8 u ← DELETE-MIN(Q)

9 foreach v ∈ Adj[u] do
10 if w(u, v) < v .key and v ∈ Q then
11 v .key ← w(u, v)
12 v .p ← u

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Example

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Why does it work?

I Both Kruskal’s and Prim’s algorithms are special cases of a
general method to obtain a minimum spanning tree.

I The basic idea is based on the following:

I Maintain a set of edges A.

I Before every iteration A is a subset of some minimum
spanning tree.

I At each step we add an edge to A such that A is still a subset
of some MST.

I An edge having that property is called safe for A.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

1 MST(G)

2 A← ∅
3 while A is not MST do
4 find edge (u, v) safe for A
5 A← A ∪ {(u, v)}
6 return A

I The above algorithm looks easy.

I But how do we find a safe edge?

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Some Definitions

I Let G = (V ,E) be a graph with some real-valued weight
function w : E → R.

I A cut (S ,V − S) of the graph G is a partition of V .

I We say a cut (S ,V − S) respects A ⊆ E if no edge in A
crosses the cut.

I An edge is said to be a light edge crossing a cut if its weight
is the minimum of any edge crossing the cut.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

This is why it works

I The reason why both algorithms work is the following theorem

Theorem
Let A be a set of edges included in some minimum spanning tree,
(S ,V − S) a cut that respects A, and (u, v) be a light edge
crossing (S ,V − S). Then (u, v) is safe for A.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Correctness of Prim’s Algorithm

V − Q Qu

u.p

I At the beginning of every iteration (except the first) Prim’s
algorithm starts by removing u where u.key is minimum. This
means that (u.p, u) is a light edge for the cut (Q,V − Q)

I Therefore Prim’s algorithm is correct.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Correctness of Kruskal’s Algorithm

I Prior to every iteration of Kruskal’s algorithm we have

1. A forest (a collection of trees) GA = (V ,A). (initially is A is
empty)

2. Select an edge (u, v) ∈ E − A with

2.1 w(u, v) is minimal.
2.2 u ∈ Tu and v /∈ Tu where Tu is a tree in GA that contains u.

3. From the above we have that: (Tu,V − Tu) is a cut that
respects A and (u, v) is a light edge crossing that cut.

I From the theorem we know that (u, v) is a safe edge for A.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Complexity

I Kruskal: we use the union find operations we learned in the
beginning of the semester. Let | V |= n and | E |= m.

I Recall that we use an array id to specify the parent of node in
the (logical) tree that represents a given group.

I e.g. node id [i] is the parent of i . Initially each node is its own
parent: id [i] = i thus the first for loop is Θ(n).

I Sorting is Θ(m logm).

I In our implementation, Union is Θ(1) and FIND-SET is
Θ(log n). Therefore the foreach loop is Θ(m log n).

I Adding all the contributions we get: Θ(n +m logm +m log n).

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Strongly Connected Components

I Given a graph G =< V ,E > we say that the set of vertices
C ⊆ V is a strongly connected component if

I for every pair u, v ∈ C we have: u v and v u

I We can print all strongly connected components in a graph by
doing DFS twice. The first over the graph and the second
over the transpose of the graph.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Kosaraju Algorithm

1 foreach v ∈ V do
2 if v .color = WHITE then
3 DFS-VISIT(v)

4 Reverse all the edges of G and reset all colors
5 foreach v ∈ V in decreasing finish time do
6 if v .color = WHITE then
7 DFS-VISIT(v)

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Single Source Shortest Path

I Given a graph G = (V ,E) with a real-valued weight function
w we often as the question:

I What is the minimal cost (shortest) path from s ∈ V to all
other vertices of the graph.

I We will look at two algorithms that perform that taks

1. Bellman-Ford.
2. Dijkstra.

I First we need some definitions and theorems.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

I Given a graph G = (V ,E) and a real-valued weight function
w : E → R.

I weight of path p = (v0, . . . , vk) sometimes written as

w(p) =
k∑

i=1

w(vi−1, vi)

I The shortest path cost δ

δ(u, v) =

{
min{w(p) : u

p
 v} if there is a path from u to v

∞ otherwise

}

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Properties of Shortest Path

I Subpaths of shortest path are subpath: Given a graph
G = (V ,E) and weight function w : E → R let
p = (v1, . . . vk) be a shortest path from v1 to vk then for any
1 ≤ i , j ≤ k , pij = (vi , . . . , vj) is a shortest path from vi to vj .

I Proof: we write v1
p
 vk which can be decomposed into

v1
pi vi

pij
 vj

pj
 vk

I Then w(p) = w(pi) + w(pij) + w(pj) so if pij is not the
shortest path then ∃p′ij with w(p′ij) < w(pij) then we can write

I w(p′) = w(pi) + w(p′ij) + w(pj) < w(p) a contradiction since
p is the shortest path from v1 to vk .

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Negative weight

I Even if a path contains edges with negative weight a shortest
path can still be defined.

I It is undefined if the path contains a negative weight cycle.

I This is because we can ”cross” the cycle as many times as we
want, every time lower the cost.

I Therefore in the case when there is a negative cycle on a path
from u to v then we set δ(u, v) = −∞ where δ(a, b) is the
shortest path cost from a to b.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Example of Negative Cycles

I δ(s, a) = 3,δ(s, b) = −1,δ(s, c) = 5,δ(s, d) = 11.
I (e, f) form a negative cycle therefore any node reachable from

s through this cycle has δ = −∞
δ(s, e) = δ(s, f) = δ(s, g) = −∞

I h, i , j are not reachable from s thus
δ(s, h) = δ(s, i) = δ(s, j) =∞

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Representation of Shortest Paths

I In all the algorithms that we will deal with, we maintain for
every vertex v its predecessor v .p (which could be NULL)

I At termination v .p will be the predecessor of v on a shortest
path from source s to v .

I We also maintain a value v .d which at termination will be the
value of the shortest path cost from source s to v .

I During the execution of the algorithm v .d will be an upper
bound on the value of the shortest path cost.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Relaxation

I Relaxing an edge (u, v) means testing if we can improve the
shortest path cost of v by using the edge (u, v).

I If we can then we update v .d and v .p.

24-4 Lecture Notes for Chapter 24: Single-Source Shortest Paths

RELAX(u, v,w)

if d[v] > d[u]+ w(u, v)
then d[v]← d[u]+ w(u, v)

π [v]← u

3 3

RELAX

u v
4 10

4 7

RELAX

4 6

4 6

For all the single-source shortest-paths algorithms weíll look at,

• start by calling INIT-SINGLE-SOURCE,

• then relax edges.

The algorithms differ in the order and how many times they relax each edge.

Shortest-paths properties

Based on calling INIT-SINGLE-SOURCE once and then calling RELAX zero or

more times.

Triangle inequality

For all (u, v) ∈ E , we have δ(s, v) ≤ δ(s, u) + w(u, v).

Proof Weight of shortest path s ! v is ≤ weight of any path s ! v. Path
s ! u → v is a path s ! v, and if we use a shortest path s ! u, its weight is
δ(s, u) + w(u, v).

Upper-bound property

Always have d[v] ≥ δ(s, v) for all v. Once d[v] = δ(s, v), it never changes.

Proof Initially true.
Suppose there exists a vertex such that d[v] < δ(s, v).

Without loss of generality, v is first vertex for which this happens.
Let u be the vertex that causes d[v] to change.
Then d[v] = d[u]+ w(u, v).

So,

d[v] < δ(s, v)

≤ δ(s, u) + w(u, v) (triangle inequality)

≤ d[u]+ w(u, v) (v is first violation)
⇒ d[v] < d[u]+ w(u, v) .

I In the figure to the left the cost of v was changed to the new
cost (7) whereas to the right it was not changed since the
new cost (7) is bigger than the current (6).

I What is NOT shown is the change to v .p in the first case.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Initialization and Relaxation

I Initially all vertices (except the source) have cost ∞ and no
predecessors (including the source).

1 INITIALIZE(G,s)

2 foreach v ∈ V do
3 v .d ←∞
4 v .p ← NULL

5 s.d ← 0

1 RELAX(u,v)

2 if v .d > u.d + w(u, v) then
3 v .d ← u.d + w(u, v)
4 v .p ← u

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Properties of Relaxation

Relaxation has the following properties

Path relaxation If p = (v0, . . . , vk) is the shortest path from
s = v0 to v = vk and the edges of p are relaxed in
the order (v0, v1), (v1, v2), . . . , (vk−1, vk) then
v .d = δ(s, v). (note that this is true regardless of
any other relaxations)

Predecessor subgraph If v .d = δ(s, v) for all v ∈ V then the
predecessor subgraph is a shortest-paths tree rooted
at s.

Upper Bound We always have v .d ≥ δ(s, v) and once
v .d = δ(s, v) it never changes.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Bellman-Ford Algorithm

I The Bellman-Ford algorithm computes the shortest path from
a given source to all other nodes in the graph.

I It works with negative weights.

I It can detect negative cycles.

I It uses the previously defined procedure RELAX to compute
the shortest path.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Bellman-Ford Pseudo Code

1 BELLMAN-FORD(G,s);
2 INITIALIZE(G,s)

3 for i ← 1 To V − 1 do
4 foreach (u, v) ∈ E do
5 RELAX(u,v)

6

7 foreach (u, v) ∈ E do
8 if v .d > u.d + w(u, v) then
9 return FALSE

10 return TRUE

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Example

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Correctness of Bellman-Ford

I If the graph has no negative cycles then the shortest path
cannot contain a cycle since remove it ”shortens” (at least the
same for 0 cost cycle) the path

I Therefore if we have n vertices a shortest path cannot visit
more that n of them and thus it contains at most n− 1 edges.

I Bellman-Ford is iterated n − 1 times and each time ALL the
edges are relaxed.

I So if p1, . . . pk is a shortest path, iteration i relaxes all edges
INCLUDING pi−1, pi .

I This means among ALL relaxations the edges of the path are
relaxed in the order (p1, p2), . . . , (pk−1, pk)

I By the path-relaxation property d [pk] = δ(s, pk)

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Complexity of Bellman-Ford

I The initialization is O(|V |).

I the double loop is O(|V | · |E|).

I Therefore the total cost of the Bellman-Ford is O(|V | · |E|).

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Dijkstra’s Algorithm

I Dijkstra’s algorithm is another single source shortest path.

I It works when all weights are positive.

I We will see that it is faster than the Bellman-Ford algorithm.

I It maintains a set S of nodes whose shortest paths have been
determined

I All other nodes are kept in a min-priority queue to keep track
of the next node to process.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Dijkstra Pseudo Code

1 DIJKSTRA(G,s);
2 INITIALIZE(G,s)

3 S ← ∅
4 Q ← V
5 while Q 6= ∅ do
6 u ← EXTRACT-MIN(Q)

7 S ← S ∪ {u}
8 foreach v ∈ Adj [u] do
9 RELAX(u,v)

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Example

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Complexity

I The running time of Dijkstra’s algorithm depends on the
implementation of the queue.

I Using a min-heap on a sparse graph gives complexity of
O((V + E) logV).

I This is because the while loop executes V times. The
extract-min is O(logV) for a cost of V logV . The relax
includes an key update which means logV . Since each edge is
relaxed at most once then the total is E with a cost of
E logV .

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Bellman-Ford Revisited

I We will take a look at a variation of the Bellman-Ford
discussed earlier.

I The basic idea is that with n nodes the shortest path from
any two nodes can have at most n − 1 edges.

I Let s be the source node. We need to compute the shortest
path from s to all other nodes.

I For any v let d [i , v] be the cost of the shortest path from s to
v that contains at most i edges. Then (see figure)

d [i + 1, v] = min(d [i , v], min
w∈V

(d [i ,w] + cwv))

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

s

v

w

i

i

cwv

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

I From the previous information we have

I Since we are guaranteed that the shortest path is at most
n− 1 edges the above recursive equation gives us an algorithm
to compute the shortest path by iterating of the length.

I Note that the values for step i is saved to be used later,
namely in step i + 1.

I This strategy of saving values instead of recomputing is called
Dynamic Programming.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

1 BELLMAN-FORD(G,s);
2 foreach v ∈ V do
3 d [0, v] =∞
4 d [0, s] = 0
5 for i = 1, . . . , n do
6 d [i , v] = min(d [i − 1, v],minw∈V (d [i − 1,w] + cvw))

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Eulerian cycles

I A Eulerian path in a graph is a path from vertex u to vertex v
that uses every edge exactly once.

I A Eulerian cycle is a closed (i.e. u = v Eulerian path)
I Formally, a path v1, . . . , vk in a graph G = (V ,E) is said to

be Eulerian iff

1. ∀e ∈ E ,∃i such that (vi−1, vi) = e.
2. ∀i , j we have i 6= j ⇒ (vi−1, vi) 6= (vj−1, vj).

Theorem
A graph G = (V ,E) has a Eulerian cycle iff every vertex has even
degree

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Proof.

I (⇒) Assume that a Eulerian cycle, v1 . . . , vi−1, vi , vi+1, . . . , vk
exists. Consider an arbitrary vertex vi 6= 1, k. that occurs l
times in the path. Every time vi occurs it is of the form
vi−1, vi , vi+1 where (vi−1, vi) ∈ E and (vi , vi+1) ∈ E which
means for every occurrence of vi in the path, two edges
(distinct by definition) are ”used”. The same reasoning
applies to v1 and vk since v1 = vk .

I (⇐)Assume that every vertex has an even degree. We
construct a Eulerian cycle as follows.

I Start at an arbitrary vertex u, and choose an unused edge
every time until you get back to u and there are no more
unused edges to choose from.

I Next we select a vertex v included in the previous ”walk” and
repeat until we get back to v .

I Finally, splicing the above closed paths gives us the Eulerian
cycle.

Hikmat Farhat Data Structures

Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

I We still need to prove that when starting at vertex u and
choosing previously unused edges we get back to u.

I By way of contradiction assume that starting with vertex u we
get ”stuck” in vertex v 6= u. Let the followed path be
u, x1, . . . , xk , v .

I Every time v is visited (except the last) two edges of v are
used therefore an odd number of edges of v are used which is
a contradiction because every vertex was assumed to have an
even number of edges.

Hikmat Farhat Data Structures

	Graphs
	Representation
	topological sort
	BFS and DFS
	MST
	Connected Components
	Shortest Paths

