Data Structures **Graphs**

Hikmat Farhat

メロメメ 御き メミメメ ミト

È

 299

Introduction

- \triangleright Note Most Figures are from Cormen et. al.
- A graph $G = (V, E)$ is a set of vertices V and a set of edges E.
- Each element in E is a pair (v, w) with $v, w \in V$.
- If the pairs are ordered then the graph is directed (sometimes called digraph).
- if $(v, w) \in E$ then we say w is adjacent to v
- \triangleright Usually we associate a weight (or cost) with each edge.
- A path is a sequence of vertices w_1, \ldots, w_n such that $(w_i, w_{i+1}) \in E$.
- \triangleright the length of a path is the number of [edg](#page-0-0)[es](#page-2-0) [i](#page-0-0)[n](#page-1-0) [it](#page-2-0)

④ 重 を……

 Ω

- \triangleright A path is said to be simple if all vertices, except possibly the first and last, are distinct.
- A cycle is a path such that $w_1 = w_n$.
- \triangleright in an undirected graph we require that the edges be distinct to have a cycle.
- \triangleright for example v, w, v should not be considered a cycle since (v, w) and (w, v) are the same edge.
- \triangleright A graph is said to be **acyclic** if it contains no cycles.
- \triangleright A graph in which from every vertex there is path to every other vertex is called connected.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Graph representation

- \triangleright There are essentially two ways to represent a graph
	- \blacktriangleright Adjacency matrix.
	- \blacktriangleright Adjacency list.
- \triangleright Most of the time adjacency list is better since it is $O(|E| + |V|)$ in memory requirement.
- \triangleright This is the preferred representation when the graph is sparse, $|E| \ll |V^2|$.
- The adjacency matrix is $O(|V^2|)$ in memory requirement and it is preferred when the graph is dense , $|E|{\approx}|V^2|$.
- \triangleright In the adjacency matrix representation it is much faster to check whether two vertices are adjacent.

K ロ ⊁ K 伊 ⊁ K 店

[Graphs](#page-1-0) [Representation](#page-3-0) [topological sort](#page-5-0) **BFS** and DFS **[MST](#page-24-0) [Connected Components](#page-40-0)

Act of Paths** [Shortest Paths](#page-42-0) [The introduction to Part VI talks more about this.] Vertex *u*ís list has all vertices v such that (*u*, v) ∈ *E*. (Works for both directed and

Examples

ai j =

È

 299

Topological Sort

- \triangleright Topological sort is an ordering of **directed acyclic** graphs.
- \blacktriangleright The idea is that if there is a path from node u to node v then ν appears **after** μ in the ordering.
- \triangleright As an example, we use topological sort to list the **valid** sequence of courses that are consistent with prerequisites.

 $4.17 \times$

4 A F

メロメ メ団 メメ ミメ メミメー

目

 299

- \triangleright A simple algorithm to perform topological sort is to find a node with no incoming edges.
- \triangleright We can print that edge then follow the adjacency list.
- \triangleright Define the **indegree** of a node v as the number of edges (u, v) .
- \triangleright Suppose that for each node in the graph we have the indegree and the adjacency list then a simple algorithm would be

 $AB + AB$

```
Graphs
        Representation
       topological sort
         BFS and DFS
                 MST
Connected Components
        Shortest Paths
```

```
1 for i = 1 to n do
```

```
2 | u=findIndegreeZero()
```

```
3 | print u
```

```
4 foreach v \in Adj[u] do
```

```
\begin{array}{|c|c|c|c|c|}\n5 & & v.indegree \leftarrow v.indegree - 1\n\end{array}
```
- \blacktriangleright The complexity of the above algorithm is $O(|V|^2)$ because findIndegreeZero has to scan all nodes every time which is $O(|v|)$
- ightharpoonup since we do it $O(|V|)$) times then the total is $O(|V|^2)$.
- \triangleright Not counting the cost of computing the indegree of all nodes initially.

Administration

Breadth First Search

- \triangleright As we will see later many algorithms depend on **breadth first** search (BFS).
- Given a graph $G = (V, E)$ and a **source** node s, BFS systematically "discovers" all vertices that can be reached from s.
- It is breadth first because all vertices at distance k from s are discovered **before** any vertex at distance $k + 1$ is discovered.
- \triangleright BFS works by coloring nodes with two different colors: white and black.
- \triangleright A white node means it has not been discovered. Black means it has been discovered.

 $4.11 \times 4.60 \times 4.72 \times$

- \triangleright The algorithm starts by coloring all nodes white except the source s is colored black.
- It then proceed with the discovery of all of s neighbors.
- \blacktriangleright Given a node v
	- \triangleright v.d is the distance (number of links) from s to v.
	- \blacktriangleright adj[v] is the list of v's neighbors.
	- \triangleright v.p is the predecessor of v in the path from s to v.

 $4.17 \times$

 \overline{AB} \overline{B} \overline{C}

BFS Initialization

```
1 BFS(G, v)2 foreach v \in V - \{s\} do
 3 \mid v \cdot color \leftarrow \textit{WHITE}4 v.d \leftarrow 05 \big| v.p \leftarrow NULL6 s.color \leftarrow BLACK
 7 s.d \leftarrow 0
 8 s.p \leftarrow NULL9 Q \leftarrow \emptyset10 ENQUEUE(Q,s)
```
∢ ロ ▶ - ∢ @ ▶ - ∢ ミ

 \sim ∢ 重 ≯ $2Q$

目

BFS Pseudo Code

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶

重

 $2Q$

Example

Hikmat Farhat [Data Structures](#page-0-0)

 299

ŧ

In

Complexity of BFS

- \triangleright To analyze the complexity of BFS first we note that after initialization no vertex color is set to white.
- \triangleright The above implies that each vertex is enqueued (and dequeued) only once.
- Since the enqueue/dequeue operations are $O(1)$ then for all nodes it is $O(|V|)$.
- \triangleright When a vertex is dequeued we scan the adjacency list and the sum of all adjacency list is just $|E|$
- In Therefore the total cost of BFS is $O(|V| + |E|)$.

 $4.11 \times 4.60 \times 4.72 \times$

Shortest Paths

- ► Given a graph $G = (V, E)$ and a source node $s \in V$. We define the **shortest-path** distance $\delta(s, v)$ from s to $v \in V$ to be the minimum number of edges in any path from s to v .
- ► BFS not only discovers every vertex $v \in V$ reachable from a source s
- But also $v.d = \delta(s, v)$ and
- \triangleright The shortest-path from s to v is **composed** of the shortest-path from s to v.p **followed** by the edge $(v.p, v)$.
- \blacktriangleright The above observation allows us to determine not only the cost $\delta(s, v)$ but also the exact path by iterating backwards over v.p.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

Depth First Search

- In a depth first search DFS edges are explored out of the most recently discovered node.
- \triangleright As the name implies we go "deeper" whenever it is possible.
- \triangleright When all the neighbors of a node v are discovered we "backtrack" to the parent of v and explore other nodes.
- \triangleright When we are done discovering the descendants of some source s and some nodes remain undiscovered then one of them is selected as source and the process is repeated.
- \triangleright When the algorithm is done with a certain node, it records the discovery time and finishing time

K ロ ト K 倒 ト K 走 ト

DFS Pseudo Code

 1 DFS (G)

```
2 foreach v \in V do
```

```
3 \, v.color \leftarrow WHITE
```

```
4 \vert \quad v.p \leftarrow NULL
```

```
5 time \leftarrow 0
```

```
6 foreach v \in V do
```

```
7 if v.color = WHITE then
```

```
8 | DFS-VISIT(v)
```
K ロ ▶ | K 御 ▶ | K 舌

ス 重っ

IN

 $2Q$

目

DFS-VISIT Pseudo Code

- 1 DFS-VISIT(u)
- 2 u.color \leftarrow GRAY
- 3 time \leftarrow time $+1$
- 4 $u.d \leftarrow time$
- 5 foreach $v \in adj[u]$ do
- 6 if v.color = WHITE then
 $\begin{array}{c|c} 6 & \text{if } v.\text{color} = W$
 $\begin{array}{c} 7 & \text{DFS-VISIT(v)} \end{array}$
- $|$ DFS-VISIT(v)
- $B \cup color \leftarrow BI$ ACK
- 9 times \leftarrow time $+1$
- 10 u.f \leftarrow time

K ロ ▶ K 御 ▶ K 舌

IN ∢ 重 ≯ 扂

DFS Example

Hikmat Farhat [Data Structures](#page-0-0)

 290

ŧ

Complexity

- \triangleright The initialization to WHITE is $O(|V|)$
- \blacktriangleright Then DFS is called $O(|V|)$ times.
- Each time DFS-VISIT is called only once for each node because it is called on WHITE nodes only.
- \triangleright The cost of DFS-VISIT(v) is $O(|adj[v]|)$.
- \triangleright Thus the cost of all calls to DES-VISIT is

$$
\sum_{v\in V} |adj[v]| = O(|E|)
$$

 \blacktriangleright Therefore the total cost is

$$
O(|E|+|V|)
$$

 $4.17 \times$

 \leftarrow \leftarrow \leftarrow

Topological Sort Revisited

- \triangleright We can implement an efficient topological sort using DFS as follows
	- 1. Call DFS on the graph.
	- 2. Every time a node is finished add it to the front of a linked list
	- 3. When done the resulting list is the topological sort.

 $4.17 \times$

 \leftarrow \overline{m} \rightarrow

DFS Topological Sort Example

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

È

 299

Transitive Closure

- Given a graph $G = < V, E >$ the transitive closure is a two dimensional array (a relation) tc[][] such that $t[u][v] = 1$ if v can be reached from μ and 0 otherwise.
- \triangleright The transitive closure closure can be computed with a slight modification of DFS shown below.

 \leftarrow \Box

3 4 4 8 9 9 9 9 9


```
1 foreach s \in V do
2 SEARCH(s,s);
3 SEARCH(s,u)
4 tc[s][u] \leftarrow 1
5 foreach v \in adj[u] do
6 | if tc[s][v] = 0 then
7 \mid SEARCH(s,v)
```
扂

Minimum Spanning Trees

- In many application, when the system is represented by a graph we need to find a Minimum Spanning Tree (MST).
- \triangleright As the name suggest this collection of nodes is
	- 1. A tree.
	- 2. Spanning. meaning includes all the nodes of the graph.
	- 3. It has the **least total cost** of all such trees.
- \triangleright First we need to introduce some preliminary operations.

- 3 桐 ト 3 手 ト

Disjoint Sets Data Structures

- \triangleright We introduce some operations on disjoint sets. Any element is contained in only one set.
- \triangleright MAKE-SET(x): create a new set whose only member is x.
- \triangleright FIND-SET(x): returns a pointer to the representative of the set containing x .
- \triangleright UNION(x,y): combine the sets containing x and y into a new set.

 $4.71 \times 4.77 \times 4.75$

Kruskal's Algorithm

- \triangleright Kruskal's algorithm computes a MST of a given graph.
- \triangleright Every edge has an associated weight or cost.
- \triangleright The idea is to build the MST by adding an edge every iteration.
- \blacktriangleright The edges are considered by increasing order.
- \triangleright An edge is added if it doesn't create a cycle.
- \triangleright The algorithm stops when there are no more edges to consider.

4 A F


```
1 MST-KRUSKAL(G)
2 A \leftarrow \emptyset3 foreach v \in V do
4 | MAKE-SET(v)
5 F \leftarrow SORT-EDGES(E)
6 foreach (u, v) \in F do
7 if FIND-SET(u) \neq FIND-SET(v) then
8 \bigcup A \leftarrow A \cup \{(u, v)\}\9 | UNION(u, v)
```
Example

Hikmat Farhat [Data Structures](#page-0-0)

 290

Example

Hikmat Farhat [Data Structures](#page-0-0)

 299

È

```
Graphs
        Representation
       topological sort
         BFS and DFS
                 MST
Connected Components
        Shortest Paths
```
Prim's Algorithm

```
1 MST-PRIM(G,r)
2 foreach v \in V do
3 | v.key \leftarrow \infty4 v.p \leftarrow NULL5 r.key \leftarrow 0
6 Q \leftarrow V7 while Q \neq \emptyset do
8 \mid u \leftarrow DELETE-MIN(Q)
9 | foreach v \in Adj[u] do
10 if w(u, v) < v key and v \in Q then
11 | | v.\text{key} \leftarrow w(u, v)12 | | v.p \leftarrow u
```
K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

 $2Q$

Example

 299

重

Why does it work?

- \triangleright Both Kruskal's and Prim's algorithms are special cases of a general method to obtain a minimum spanning tree.
- \blacktriangleright The basic idea is based on the following:
- \blacktriangleright Maintain a set of edges A.
- \triangleright Before every iteration A is a subset of some minimum spanning tree.
- At each step we add an edge to A such that A is still a subset of some MST.
- An edge having that property is called safe for A .

 $4.17 \times$

Administration

- 1 MST(G)
- $2 A \leftarrow \emptyset$
- 3 while A is not MST do
- $\begin{array}{|c|c|c|}\n4 & \text{find edge (}u, v\text{) safe for }A\n\end{array}$
- $\begin{array}{c} \texttt{5} \end{array} \begin{array}{c} \begin{array}{c} \texttt{A} \leftarrow \texttt{A} \cup \{ (\texttt{u}, \texttt{v}) \} \end{array} \end{array}$
- 6 return A
	- \blacktriangleright The above algorithm looks easy.
	- \triangleright But how do we find a safe edge?

Some Definitions

- Eet $G = (V, E)$ be a graph with some real-valued weight function $w : E \to R$.
- A cut $(S, V S)$ of the graph G is a **partition** of V.
- \triangleright We say a cut $(S, V S)$ respects $A \subseteq E$ if no edge in A crosses the cut.
- An edge is said to be a **light edge** crossing a cut if its weight is the minimum of any edge crossing the cut.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

This is why it works

 \triangleright The reason why both algorithms work is the following theorem

Theorem

Let A be a set of edges included in some minimum spanning tree, $(S, V - S)$ a cut that respects A, and (u, v) be a light edge crossing $(S, V - S)$. Then (u, v) is safe for A.

 \leftarrow \Box

3 4 4 8 9 9 9 9 9

Correctness of Prim's Algorithm

- \triangleright At the beginning of every iteration (except the first) Prim's algorithm starts by removing u where u . key is minimum. This means that $(u.p, u)$ is a light edge for the cut $(Q, V - Q)$
- \blacktriangleright Therefore Prim's algorithm is correct.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$

Correctness of Kruskal's Algorithm

 \triangleright Prior to every iteration of Kruskal's algorithm we have

- 1. A forest (a collection of trees) $G_A = (V, A)$. (initially is A is empty)
- 2. Select an edge $(u, v) \in E A$ with

2.1 $w(u, v)$ is minimal.

2.2 $u \in T_u$ and $v \notin T_u$ where T_u is a tree in G_A that contains u.

4 m + 4 m + 4 m +

へのへ

3. From the above we have that: $(T_u, V - T_u)$ is a cut that respects A and (u, v) is a light edge crossing that cut.

From the theorem we know that (u, v) is a safe edge for A.

Complexity

- **Kruskal**: we use the union find operations we learned in the beginning of the semester. Let $|V| = n$ and $|E| = m$.
- Recall that we use an array id to specify the parent of node in the (logical) tree that represents a given group.
- e.g. node $id[i]$ is the parent of i. Initially each node is its own parent: $id[i] = i$ thus the first for loop is $\Theta(n)$.
- Sorting is $\Theta(m \log m)$.
- In our implementation, Union is $\Theta(1)$ and FIND-SET is $\Theta(\log n)$. Therefore the foreach loop is $\Theta(m \log n)$.
- Adding all the contributions we get: $\Theta(n + m \log m + m \log n)$.

メロメ メ御 メメ ミメ メミメ

Strongly Connected Components

- Given a graph $G = \langle V, E \rangle$ we say that the set of vertices $C \subset V$ is a strongly connected component if
- **►** for every pair $u, v \in C$ we have: $u \rightsquigarrow v$ and $v \rightsquigarrow u$
- \triangleright We can print all strongly connected components in a graph by doing DFS twice. The first over the graph and the second over the transpose of the graph.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Kosaraju Algorithm

```
1 foreach v \in V do
```
2 | if
$$
v
$$
.color = $WHITE$ then

```
3 | DFS-VISIT(v)
```
4 Reverse all the edges of G and reset all colors

```
5 foreach v \in V in decreasing finish time do
```

```
6 \parallel if v.color = WHITE then
```

```
7 | DFS-VISIT(v)
```
∢ ロ ▶ - ∢ @ ▶ - ∢ ミ

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

Single Source Shortest Path

- Given a graph $G = (V, E)$ with a real-valued weight function w we often as the question:
- \triangleright What is the minimal cost (shortest) path from $s \in V$ to all other vertices of the graph.
- \triangleright We will look at two algorithms that perform that taks
	- 1. Bellman-Ford.
	- 2. Dijkstra.
- \blacktriangleright First we need some definitions and theorems.

3 4 4 8 9 9 9 9 9

- Given a graph $G = (V, E)$ and a real-valued weight function $w : E \to R$.
- ight of path $p = (v_0, \ldots, v_k)$ sometimes written as

$$
w(p) = \sum_{i=1}^k w(v_{i-1}, v_i)
$$

 \blacktriangleright The shortest path cost δ

$$
\delta(u, v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\leadsto} v\} & \text{ if there is a path from } u \text{ to } v \\ \infty & \text{ otherwise} \end{cases}
$$

a mills.

4 A D

\triangleright Subpaths of shortest path are subpath: Given a graph $G = (V, E)$ and weight function $w : E \to \mathbf{R}$ let

Properties of Shortest Path

- $p = (v_1, \ldots v_k)$ be a shortest path from v_1 to v_k then for any $1\leq i,j\leq k,~ p_{ij}=(\mathsf{v}_i,\dots,\mathsf{v}_j)$ is a shortest path from v_i to $\mathsf{v}_j.$
- **Proof**: we write $v_1 \stackrel{p}{\leadsto} v_k$ which can be decomposed into $v_1 \stackrel{p_i}{\leadsto} v_i \stackrel{p_{ij}}{\leadsto} v_j \stackrel{p_j}{\leadsto} v_k$
- In Then $w(p) = w(p_i) + w(p_{ii}) + w(p_i)$ so if p_{ii} is not the shortest path then $\exists p'_{ij}$ with $w(p'_{ij}) < w(p_{ij})$ then we can write
- $\blacktriangleright \;\; \mathsf{w}(\mathsf{p}') = \mathsf{w}(\mathsf{p}_i) + \mathsf{w}(\mathsf{p}'_j) + \mathsf{w}(\mathsf{p}_j) < \mathsf{w}(\mathsf{p})$ a contradiction since p is the shortest path from v_1 to v_k .

K ロ ⊁ K 御 ≯ K 君 ⊁ K 君 ≯ … 君

Negative weight

- \triangleright Even if a path contains edges with negative weight a shortest path can still be defined.
- It is undefined if the path contains a negative weight cycle.
- \triangleright This is because we can "cross" the cycle as many times as we want, every time lower the cost.
- \triangleright Therefore in the case when there is a negative cycle on a path from u to v then we set $\delta(u, v) = -\infty$ where $\delta(a, b)$ is the shortest path cost from a to b.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Example of Negative Cycles

$$
\blacktriangleright \delta(s, a) = 3, \delta(s, b) = -1, \delta(s, c) = 5, \delta(s, d) = 11.
$$

 \blacktriangleright (e, f) form a negative cycle therefore any node reachable from s through this cycle has $\delta = -\infty$ $\delta(s, e) = \delta(s, f) = \delta(s, g) = -\infty$ \blacktriangleright h, i, j are not reachable from s thus \overline{S} ⇒ ∞ ⊙ ∞ ⊙ ∞ ⊙ ∞ ⊙ ∞ ⊙ ∞ ⊙ ∞ ⊙ ∞ ∞[Data Structures](#page-0-0) $2Q$ $\delta(s,h) - \delta(s,i) - \delta(s,i) -$

Representation of Shortest Paths

- \triangleright In all the algorithms that we will deal with, we maintain for every vertex v its predecessor $v.p$ (which could be NULL)
- At termination $v.p$ will be the predecessor of v on a shortest path from source s to v .
- \triangleright We also maintain a value v.d which at termination will be the value of the shortest path cost from source s to v .
- \triangleright During the execution of the algorithm v.d will be an upper bound on the value of the shortest path cost.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

[Graphs](#page-1-0) [Representation](#page-3-0) [topological sort](#page-5-0) [BFS and DFS](#page-9-0) **[MST](#page-24-0)** Connected Components Shortest Paths *[24-4 Lecture Notes for Cha](#page-42-0)pter 24: Single-Source Shortest Paths*

RELAX(*u*, v, w)

Relaxation

- \blacktriangleright **Relaxing** an edge (u, v) means testing if we can improve the shortest path cost of v by using the edge (u, v) .
- If we can then we update $v.d$ and $v.p$.

- In the figure to the left the cost of v was changed to the new cost (7) whereas to the right it was not changed since the new cost (7) is bigger than the current (6) .
- The algorithm differ in the [ord](#page-47-0)[er](#page-49-0) [a](#page-42-0)[nd](#page-48-0) [h](#page-49-0)[o](#page-41-0)[w](#page-66-0) [m](#page-41-0)a[ny](#page-66-0) [ti](#page-0-0)[mes](#page-66-0) they relax each edge. \triangleright What is NOT shown is the change to v.p in the first case.

Initialization and Relaxation

- \triangleright Initially all vertices (except the source) have cost ∞ and no predecessors (including the source).
- 1 INITIALIZE(G,s)
- 2 foreach $v \in V$ do
- 3 | $v.d \leftarrow \infty$ 4 $\vert \quad v.p \leftarrow NULL$
- 5 s.d \leftarrow 0

1 RELAX (u, v) 2 if $v.d > u.d + w(u, v)$ then $3 \mid v.d \leftarrow u.d + w(u, v)$ 4 $\vert v.p \leftarrow u$

Properties of Relaxation

Relaxation has the following properties

Path relaxation If $p = (v_0, \ldots, v_k)$ is the shortest path from $s = v_0$ to $v = v_k$ and the edges of p are relaxed in the order $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)$ then $v.d = \delta(s, v)$. (note that this is true regardless of any other relaxations)

Predecessor subgraph If $v.d = \delta(s, v)$ for all $v \in V$ then the predecessor subgraph is a shortest-paths tree rooted at s.

Upper Bound We always have $v.d > \delta(s, v)$ and once $v.d = \delta(s, v)$ it never changes.

イロメ イ御メ イヨメ イヨメ

Bellman-Ford Algorithm

- \triangleright The Bellman-Ford algorithm computes the shortest path from a given source to all other nodes in the graph.
- It works with negative weights.
- It can detect negative cycles.
- \triangleright It uses the previously defined procedure RELAX to compute the shortest path.

 $4.17 \times$

 \leftarrow \leftarrow \leftarrow

Bellman-Ford Pseudo Code

```
1 BELLMAN-FORD(G,s);
2 INITIALIZE(G,s)
3 for i \leftarrow 1 To V - 1 do
4 foreach (u, v) \in E do
5 | RELAX(u, v)
6
7 foreach (u, v) \in E do
 8 \mid if v.d > u.d + w(u, v) then
 9 | | return FALSE
10 return TRUE
```
 $4.17 \times$

∢ 伊 ▶ → 三

∢ 重 ≯

Example

Hikmat Farhat [Data Structures](#page-0-0)

メロメ メ団 メメ ミメ メミメー

目

 299

Correctness of Bellman-Ford

- If the graph has no negative cycles then the shortest path cannot contain a cycle since remove it "shortens" (at least the same for 0 cost cycle) the path
- \triangleright Therefore if we have *n* vertices a shortest path cannot visit more that n of them and thus it contains at most $n - 1$ edges.
- \triangleright Bellman-Ford is iterated $n-1$ times and each time ALL the edges are relaxed.
- So if p_1, \ldots, p_k is a shortest path, iteration *i* relaxes all edges INCLUDING p_{i-1}, p_i .
- \triangleright This means among ALL relaxations the edges of the path are relaxed in the order $(p_1, p_2), \ldots, (p_{k-1}, p_k)$

► By the [p](#page-53-0)ath-relaxation property $d[p_k] = \delta(s, p_k)$ $d[p_k] = \delta(s, p_k)$ $d[p_k] = \delta(s, p_k)$ $d[p_k] = \delta(s, p_k)$ $d[p_k] = \delta(s, p_k)$

Complexity of Bellman-Ford

- \blacktriangleright The initialization is $O(|V|)$.
- In the double loop is $O(|V| \cdot |E|)$.
- \triangleright Therefore the total cost of the Bellman-Ford is $O(|V| \cdot |E|)$.

K ロ ト K 倒 ト K ミ ト

一人 ヨート

 $2Q$

扂

Dijkstra's Algorithm

- \triangleright Dijkstra's algorithm is another single source shortest path.
- It works when all weights are **positive**.
- \triangleright We will see that it is faster than the Bellman-Ford algorithm.
- It maintains a set S of nodes whose shortest paths have been determined
- \triangleright All other nodes are kept in a min-priority queue to keep track of the next node to process.

100 k

Dijkstra Pseudo Code

```
1 DIJKSTRA(G,s);
2 INITIALIZE(G,s)
3 S \leftarrow \emptyset4 Q \leftarrow V5 while Q \neq \emptyset do
6 u \leftarrow \text{EXTRACT-MIN(Q)}7 \mid S \leftarrow S \cup \{u\}8 foreach v \in Adj[u] do
9 | RELAX(u,v)
```
 \leftarrow \Box \rightarrow

∢ @ ▶

 $2Q$

ミト

Example

Hikmat Farhat [Data Structures](#page-0-0)

メロメ メ団 メメ ミメ メミメー

目

 299

Complexity

- \triangleright The running time of Dijkstra's algorithm depends on the implementation of the queue.
- \triangleright Using a min-heap on a sparse graph gives complexity of $O((V + E) \log V)$.
- \triangleright This is because the while loop executes V times. The extract-min is $O(\log V)$ for a cost of V log V. The relax includes an key update which means log V. Since each edge is relaxed at most once then the total is E with a cost of $E \log V$.

K ロ ⊁ K 倒 ⊁ K ミ ▶

Bellman-Ford Revisited

- \triangleright We will take a look at a variation of the Bellman-Ford discussed earlier.
- \blacktriangleright The basic idea is that with n nodes the shortest path from any two nodes can have at most $n - 1$ edges.
- \blacktriangleright Let s be the source node. We need to compute the shortest path from s to all other nodes.
- For any v let $d[i, v]$ be the cost of the shortest path from s to v that contains at most i edges. Then (see figure)

$$
d[i+1, v] = \min(d[i, v], \min_{w \in V}(d[i, w] + c_{wv}))
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

メロメ メ団 メメ ミメ メ ミメー

 299

È

- \blacktriangleright From the previous information we have
- \triangleright Since we are guaranteed that the shortest path is at most $n-1$ edges the above recursive equation gives us an algorithm to compute the shortest path by iterating of the length.
- \triangleright Note that the values for step *i* is saved to be used later, namely in step $i + 1$.
- \triangleright This strategy of saving values instead of recomputing is called Dynamic Programming.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$

1 **BELLMAN-FORD(G, s);**
\n2 **forecast**
$$
v \in V
$$
 do
\n3 | $d[0, v] = \infty$
\n4 $d[0, s] = 0$
\n5 **for** $i = 1, ..., n$ **do**
\n6 | $d[i, v] = min(d[i - 1, v], min_{w \in V}(d[i - 1, w] + c_{vw}))$

メロメメ 倒す メミメメミメー ミー のんぴ

Eulerian cycles

- \triangleright A Eulerian path in a graph is a path from vertex u to vertex v that uses every edge exactly once.
- A Eulerian cycle is a closed (i.e. $u = v$ Eulerian path)
- Formally, a path v_1, \ldots, v_k in a graph $G = (V, E)$ is said to be Eulerian iff
	- 1. $\forall e \in E$, ∃*i* such that $(v_{i-1}, v_i) = e$.
	- 2. ∀*i*, *j* we have $i \neq j$ ⇒ $(v_{i-1}, v_i) \neq (v_{i-1}, v_i)$.

Theorem

A graph $G = (V, E)$ has a Eulerian cycle iff every vertex has even degree

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

Proof.

- \blacktriangleright (\Rightarrow) Assume that a Eulerian cycle, $v_1 \ldots, v_{i-1}, v_i, v_{i+1}, \ldots, v_k$ exists. Consider an arbitrary vertex $v_i \neq 1, k$. that occurs l times in the path. Every time v_i occurs it is of the form v_{i-1}, v_i, v_{i+1} where $(v_{i-1}, v_i) \in E$ and $(v_i, v_{i+1}) \in E$ which means for every occurrence of v_i in the path, two edges (distinct by definition) are "used". The same reasoning applies to v_1 and v_k since $v_1 = v_k$.
- \blacktriangleright (\Leftarrow)Assume that every vertex has an even degree. We construct a Eulerian cycle as follows.
	- Start at an arbitrary vertex u , and choose an unused edge every time until you get back to u and there are no more unused edges to choose from.
	- \triangleright Next we select a vertex v included in the previous "walk" and repeat until we get back to v. イロメ イ御メ イヨメ イヨメ

- \triangleright We still need to prove that when starting at vertex u and choosing previously unused edges we get back to u.
- \triangleright By way of contradiction assume that starting with vertex u we get "stuck" in vertex $v \neq u$. Let the followed path be U, X_1, \ldots, X_k, V .
- Every time v is visited (except the last) two edges of v are used therefore an odd number of edges of v are used which is a contradiction because every vertex was assumed to have an even number of edges.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯