Data Structures Time Complexity and Formal Notations

Hikmat Farhat

May 31, 2018

4. 0. 3. 4.

э

 \mathcal{A} .

Efficient Algorithms

- **•** Given an algorithm to solve a problem we ask
- Is it efficient?
- We seek a sensible definition of efficiency
- How much work if the input doubles in size?
- For large input sizes can our algorithm solve the problem in a reasonable time?

Polynomial Time

• Efficient algorithm $=$ polynomial in the size of the input

Definition

Polynomial Time: for every input of size n \exists a, b such that number of computation steps \langle an^b

- a and b are constants that do not depend on n
- \bullet True, some algorithms are polynomials with a and/or b very large
- \bullet but for the majority of algorithms, a and d are relatively small

Why Polynomial Time ?

目

 299

 $A \equiv \mathbf{1} \times \mathbf{1} \oplus \mathbf{1} \times \mathbf{1} \oplus \mathbf{1} \times \mathbf{1} \oplus \mathbf{1} \times \mathbf{1} \oplus \mathbf{1}$

Worst Case Analysis

- Usually the running time is the running time of the worst case
- One could analysis the average case but it much more difficult and depends on the chosen distribution.
- Therefore an algorithm is efficient if it has a worst case polynomial time
- There are exceptions the most important being the simplex algorithm that works very well in practice

Informal Example: Union Find

- We will introduce the cost of algorithms informally by an example: union find.
- \bullet We have a set of *n* points and a set of *m* connections between these points.
- For any two points p and q we would like to answer the questions: is there a path from p to q ?
- Three different algorithms, with different costs, will be presented to solve the above problem.

Union Find: attempt number 1

- The basic idea is to associate an identifier with every point, so we maintain an array $id[n]$.
- The identifier of a given point is the group the point belongs to. Initially there are *n* group with one point in each, namely $id[i] = i$
- \bullet When two points, p and q, are found to be connected their respective groups are merged (union).

 \bullet the function Find(p) returns the group id that p belongs to

 \bullet therefore the cost of function find(p) is constant (i.e. independent of the number of points)

4 0 8

• Whe $p = q$ the cost of Union is $c_0 + 2c_1 + c_2 + c_3 = A$ and when $p \neq q$ the total cost of Union is

$$
c_0+2c_1+c_2+c_4(n+1)+c_5n+c_6t_p+c_7+c_3
$$

• Which can be written as $B + Cn + c_6t_p$ where B and C are constants and t_p is evaluated next

∢ロト ∢母ト ∢目

Computational Cost

- \bullet How much does it "cost" to run Find and Union when we have n points?
- For Find we already calculated it, it is a constant, $d_0 + d_1$, independent of the number of points.
- For Union, we still need to calculated t_p which is the number of times line 8 is executed.
- Line 8 is executed at least once since we know that at least $id[p] = idp$.
- Also, line 8 is executed at most $n-1$ times because at least $id[q] \neq idp$.
- Therefore $1 \le t_p \le n-1$. Inserting the value of t_p in the previous calculation for Union we get: $B + Cn + c_6 \leq Cost \leq (B - c_6) + (C + c_6)n$
- Rearranging terms we get

$$
\alpha + \beta n \le \mathsf{Cost} \le \gamma + \delta n
$$

Quick Union

- A different approach is to organize all related points in a tree structure.
- Two points belong to the same group iff they belong to the same tree.
- A tree is uniquely identified by its root.
- The array id^[] has a different meaning: $id[i] = k$ means that site k is the parent of site i.
- Only the root of a tree has the property $id[i] = i$;
- \bullet In this case find(p) returns the root of the tree that p belongs to.

Quick Union Pseudo Code

```
Find(p)while id[p] \neq p do
p = id[p]end
return pUnion(p,q)\text{proof} \leftarrow \text{Find}(p)\mathsf{qroot} \leftarrow \mathrm{Find}(q)if proot = groot then
    return
end
id[proot] \leftarrow grootcount \leftarrow count - 1
```
4 0 8

 200

不同 医 - 3

Quick Union Cost

- The cost of $Find(p)$ is $2d + 1$ where d is the depth of node p.
- \bullet This means that the cost of $Union(p, q)$ is between $(2d_p + 1) + (2d_q + 1) + 1$ and $(2d_p + 1) + (2d_q + 1) + 3$.
- The problem is that in some cases the tree degenerates into a linear list.
- In that case the height=size and instead of getting log *n* behavior we get n.
- To avoid such a situation we try to keep the trees **balanced**.
- We do this by always attaching the small tree to the large one.
- to this end we introduce a variable tsize initialized to 1.

Union Find: take 3

```
Union(p,q)\text{proof} \leftarrow \text{Find}(p)qroot \leftarrow \text{Find}(q)if proot = groot then
     return
```
end

```
if tsize[proot] > tsize[qroot] then
       \textit{id}[\textit{qroot}] \gets \textit{proof}\text{tsize}[\text{proof}] \leftarrow \text{tsize}[\text{proof}] + \text{tsize}[\text{proof}]
```
else

```
\textit{id}[\textit{proof}] \gets \textit{qroot}\text{tsize}[\text{qroot}] \leftarrow \text{tsize}[\text{proot}] + \text{tsize}[\text{qroot}]
```
end

 $count \leftarrow count - 1$

Weighted Quick Union

- We have shown that in the quick union version UnionFind, "find(p)" costs $2d + 1$ where d is the depth of node p.
- we will now show that during the computation of the weighted quick union for N sites, the depth of ANY node is at most $log N$.
- It is sufficient to show that the height of ANY tree of size k is at most $\log k$ (this is not the case in the original quick union where the height can be up to $k - 1$)

Proof

- By induction on the size of the tree.
- Base case: $k = 1$ then there is only one node and the height is $\log k = 0$.
- Assume that for any tree, $\mathcal T$ of size $i < n$, the height of $\mathcal T$, h_i is at most log *i* and consider two trees of size $i \leq j$.
- So we have h_i ≤ log *i* and h_i ≤ log *j*.

4日)

- The size of the combined tree is $i + j = k$.
- Using the weighted quick union method we know that the height of the combined tree is at most $max(1 + log i, log j)$ (why?)
- in the first case $1 + \log i = \log 2i \leq \log(i + j) = \log k$
- in the second case $\log j \leq \log(i + j) = \log k$.

 Ω

K ロ ▶ | K 伊 ▶ | K ヨ |

Asymptotic Growth of Functions

Definition

Big Oh:The set $O(g(n))$ is defined as all functions $f(n)$ with the property $\exists c, n_0$ such that $f(n) \le cg(n)$ for all $n \ge n_0$ *O***-notation**

g(*n*) is an *asymptotic upper bound* for *f* (*n*). Figure : Graphical definition of O taken from the CLRS book If *f* (*n*) ∈ *O*(*g*(*n*)), we [wri](#page-16-0)t[e](#page-18-0) *[f](#page-16-0)* [\(](#page-17-0)*[n](#page-17-0)*) [=](#page-17-0) *[O](#page-31-0)*[\(](#page-17-0)*[g](#page-31-0)*[\(](#page-32-0)*n*[\)\)](#page-0-0) [\(w](#page-64-0)ill precisely explain this soon).

[Data Structures](#page-0-0) **May 31, 2018** 18 / 65

Example

•
$$
f(n) = 2n^2 + n = O(n^2)
$$
 because let $c = 3$ and $n_0 = 1$
\n $\forall n \ge n_0 = 1$
\n $n \le n^2$
\n $2n^2 + n \le 3n^2$
\n $f(n) \le cn^2$
\n $f(n) = O(n^2)$

On the other hand $f(n) = 2n^2 + n \neq O(n)$

重

Þ

 QQ

K ロ ▶ K 何 ▶ K

∍

Definition

Big Omega:The set Ω(g(n)) is defined as all functions f (n) with the !**-notation** property $\exists c, n_0 \text{ such that } f(n) \geq cg(n) \text{ for all } n \geq n_0$

Figure : Graphical definition of Ω taken from the CLRS book

0 ≤ *cg*(*n*) ≤ *f* (*n*) for all *n* ≥ *n*0} .

Example

- Consider $f(n) = \sqrt{n}$ and $g(n) = \log n$.
- $f(n) = \Omega(g(n))$ because for $c = 1$, $n_0 = 16$ we have

$$
\sqrt{16}=4=\log 2^4
$$

Note that between n $=$ 4 and n $=$ 16 the value of log $_2$ n \geq \sqrt n

 \leftarrow \Box

- Abuse of notation: if $h(n) \in O(g(n))$ we write $h(n) = O(g(n))$
- similarly if $h(n) \in \Omega(g(n))$ we write $h(n) = \Omega(g(n))$
- If $h(n) = O(g(n))$ we say $g(n)$ is an upper bound for $f(n)$.
- If $h(n) = \Omega(g(n))$ we say $g(n)$ is a lower bound for $f(n)$.

 Ω

∢ロ ▶ (何 ▶ (日 ▶

Definition

Big Θ : The set $\Theta(g(n))$ is defined as all functions $f(n)$ with the property $\exists c_1, c_2, n_0$ such that $c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge n_0$ \overline{A}

g(*n*) is an *asymptotically tight bound* for *f* (*n*). Figure : Graphical definition of Θ taken from the CLRS book

Theorem

[Data Structures](#page-0-0) **May 31, 2018** 24 / 65

Example

• Consider $c_1 = 1$, $c_2 = 3$ and $n_0 = 1$ it is obvious that

$$
c_1n^2\leq 2n^2+n\leq c_2n^2\ \forall n\geq n_0
$$

- We can show that $f(n) = \Theta(g(n))$ iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$
- If $f(n) = \Theta(g(n))$ we say $g(n)$ is a tight bound for $f(n)$.

 Ω

∢ロ ▶ (何 ▶ (日 ▶

Definition

Little Oh: The set $o(g(n))$ is defined as all functions $f(n)$ with the property for all c, $\exists n_0$ such that $f(n) < cg(n)$ for all $n \geq n_0$

We can show that the above definition is equivalent to

$$
\lim_{n\to\infty}\frac{f(n)}{g(n)}=0
$$

4日)

Definition

Little omega: The set $\omega(g(n))$ is defined as all functions $f(n)$ with the property for all c, $\exists n_0$ such that $\overline{cg(n)} < f(n)$ for all $n \ge n_0$

We can show that the above definition is equivalent to

$$
\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty
$$

4日)

Examples

\n- •
$$
f(n) = 2n^2 + n
$$
\n- • $f(n) = \omega(n)$ because
\n

$$
\lim_{n\to\infty}\frac{2n^2+n}{n}=\infty
$$

•
$$
f(n) = o(n^3)
$$
 because

$$
\lim_{n\to\infty}\frac{2n^2+n}{n^3}=0
$$

[Data Structures](#page-0-0) **May 31, 2018** 28 / 65

K ロ > K @ ▶ K 할 > K 할 > 1 할 : X 9 Q Q*

Using Limits

• Sometimes it is easier to determine the relative growth rate of two functions $f(n)$ and $g(n)$ by using limits

• if
$$
\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0
$$
 then $f(n) = o(g(n))$.

• if
$$
\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty
$$
 then $f(n) = \omega(g(n))$.

- ► if $\lim_{n\to\infty}\frac{f(n)}{g(n)}=c$, for some constant c, then $f(n)=\Theta(g(n)).$
- Can we always do that?No
- In many situations the complexity cannot be written in an analytic form.

Exponential vs Polynomial vs Logarithmic

it is easy to show that for all $a > 0$, $b > 1$

$$
\lim_{n\to\infty}\frac{n^a}{b^n}=0
$$

And polynomials grow faster(use $m = \log n$ and the previous result) than logarithms $(\log^a x = (\log x)^a)$

$$
\lim_{n\to\infty}\frac{\log^a n}{n^b}=0
$$

つくい

Arithmetic Properties

\n- \n**transitivity:** if
$$
f(n) = O(g(n))
$$
 and $g(n) = O(h(n))$ then $\overline{f(n)} = O(h(n))$.\n
\n- \n**•** eq: $\log n = O(n)$ and $n = O(2^n)$ then $\log n = O(2^n)$.\n
\n- \n**•** constant factor: if $f(n) = O(kg(n))$ for some $k > 0$ then $\overline{f(n)} = O(g(n))$.\n
\n- \n**•** eq: $n^2 = O(3n^2)$ thus $n^2 = O(n^2)$.\n
\n- \n**•** sum: if $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$ then $\overline{f_1(n)} + f_2(n) = O(\max(g_1(n), g_2(n)))$ \n
\n- \n**•** $3n^2 = O(n^2)$, $6\log n = O(\log n)$ then $3n^2 + 6\log n = O(n^2)$ \n
\n- \n**•** product: $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$ then $\overline{f_1(n)} * f_2(n) = O(g_1(n) * g_2(n))$ \n
\n- \n**•** eq: $3n^2 = O(n^2)$, $6\log n = O(\log n)$ then $3n^2 * 6\log n = O(n^2 \log n)$ \n
\n

Þ

 299

 \rightarrow \equiv

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow \leftarrow \Box \rightarrow

Code Fragments

```
sum = 0for i = 1 \ldots n do
    sum \leftarrow sum + 1end
```
- the operation $sum = 0$ is independent of the input thus it costs a constant time c_1 .
- the operation sum \leftarrow sum $+1$ is independent of the input thus it cost some constant time c_2 .
- • Regardless of the input the loop runs n times therefore the total cost is $c_1 + c_2 n = \Theta(n)$.

The algorithm below for finding the maximum of *n* numbers is $\Theta(n)$. Input: a_1, \ldots, a_n Output: $max(a_1, \ldots, a_n)$

```
Initially max = a_1for i = 2 \ldots n do
    if a_i > max then
         max = a<sub>i</sub>end
end
```
- Try 89,47,80,50,67,102 and 19,15,13,10,8,3
- • Do they have the "same" running time?

Sequential Search

Given an array a check if element x is in the array.

```
for i = 1 \ldots n do
    if a[i] = x then
        return True
   end
```
end

return False

- What is the running time of the above algorithm?
- Consider the two extreme cases: x is the first or the last element of the array.

- If x is the first element than we perform a single operation. This is the best-case.
- If x is the last element than we perform n operation. This is the worst-case.
- Now if we run the algorithm on many different (random) input and average out the results we get the average-case.
- Which one do we use?
	- \triangleright Depends on the application and the feasibility.
	- \triangleright Real-time and critical applications usually require worst-case
	- \blacktriangleright In most other situations we prefer average-case, but difficult to calculate and depends on the random distribution!
- In light of the above, what is the best-case, average-case and worst-case for the compute max algorithm we had before?

Nested Loops

- What is the complexity of nested loops?
- The cost of a stmt in a nested loop is the cost of the statement multiplied by the product of the size of the loops

```
for i = 1 \ldots n do
    for j=1\dots m do
         k \leftarrow k + 1end
end
```
• The cost is $O(n * m)$

Factorial

- Consider the recursive implementation of the factorial function. factorial(n)
	- if $n=1$ then \parallel return 1 else | return n^* factorial(n-1) end
- The cost of size *n*? $T(n) = T(n-1) + C$
- Thus $T(n) = \Theta(n)$.

4 0 8

Complexity of Factorial

$$
T(n) = T(n-1) + C
$$

\n
$$
= T(n-2) + 2C
$$

\n
$$
= \dots
$$

\n
$$
= T(n-i) + i * C
$$

\n
$$
= \dots
$$

\n
$$
= T(1) + (n-1) * C
$$

\n
$$
= n * C + T(1) - C
$$

\n
$$
= \Theta(n)
$$

B Hikmat Farhat Carry Community Community Community [Data Structures](#page-0-0) Community Commu

 \mathcal{A} . э Þ

 299

K ロ ト K 何 ト K ヨ ト

Fibonacci

Computing the n^{th} Fibonacci number can be done recursively $fib(n)$

```
if n = 0 then
\blacksquare return 0
end
if n = 1 then
return 1
end
return fib(n-1)+fib(n-2)
```
If $T(n)$ is the cost of computing $Fib(n)$ then

$$
T(n) = T(n-1) + T(n-2) + 3
$$

• We will show, by induction on *n*, that $T(n) \geq fib(n)$ i.e. the cost of computing Fibonacci number n is greater than the number itself.

- We are assuming that all operations cost the same so the 3 comes from executing the two if stmts and the sum.
- First the base cases. If $n = 0$ then the algorithm costs 1 (if stmt), if $n = 1$ it costs 2 (2 if stmts) thus $T(0) = 1$, $T(1) = 2$.
- In the other cases we have $T(n) = T(n-1) + T(n-2) + 3$. This means $T(2) = 6 \geq fib(2) = 1$.
- Assume that $T(n) \geq fib(n)$ then

$$
T(n+1) = T(n) + T(n-1) + 3
$$

\n
$$
\geq fib(n) + fib(n-1)
$$
 hyp.
\n
$$
\geq fib(n+1)
$$

One can show that (for $n \geq 5$) $fib(n) \geq (3/2)^n$ thus $T(n) \geq (3/2)^n$ which is exponential!

 Ω

イロメ イ何 メイヨメ イヨメーヨ

Fibonacci: take two

- can we compute Fibonacci numbers more efficiently?
- It turns out yes. By just "remembering" the values we already computed.
- A simple iterative algorithm

```
FiboIter(n)
f[0] \leftarrow 0f[1] \leftarrow 1for i \leftarrow 2 to n do
 \left| f[i] \leftarrow f[i-1] + f[i-2]end
```
4 0 8

Comparison

- We had two different algorithms to compute Fibonacci number n
- One was $\Omega((3/2)^n)$ while the other was $O(n)$.
- In the first one we did not need to "save" anything.
- \bullet In the second algorithm we used an array of size *n*: **space** complexity: $O(n)$.
- This is a trade off between time and space.
- Obviously in this case the trade off is worth it.

Exponentiation

- Exponentiation is another example where the simplest algorithm is much less than optimal.
- The simplest way to compute x^n is $x \dots x_n$

 \overline{n} times

- **•** therefore the complexity of the above algorithm is $\Theta(n)$.
- We can do (much) better by observing that
- if *n* is even then $x^n = (x^{n/2})^2$
- if *n* is odd then $x^n = (x^{n/2})^2 \cdot x$
- Note the integer division, $n/2 \equiv |n/2|$, e.g. 7/2=3

Implementation

```
int power(int x, int n){
       if (n == 0) return 1;
       int half=power (x, n/2);
       half=half * half;if ( n\%2)! = 0 h a l f = h a l f *x;
       return half:
  }
```
4 0 8

重

Complexity of Exponentiation

- The analysis is simplified by assuming $n=2^k$ (other cases are similar, albeit more complicated)
- Assume: n/2, half ∗ half and the if stmt each costs 1.
- for a total of 4 (including the test for $x == 0$) when *n* is even and 5 when it is odd.
- Let $T(n)$ be the computational cost for x^n then

$$
T(n) = T(n/2) + 4
$$

= $T(n/4) + 8$
= $T(n/2^{i}) + 4i$
= ...
= $T(1) + 4k$
= $\Theta(k) = \Theta(\log n)$

Exponentiation

- In the general case we perform one extra computation every time the exponent is odd.
- Let $\beta(n)$ be the number of times such computation is performed.
- It is easy to check that $\beta(n) =$ is one less than the number of 1's in the binary representation of n
- For example if $n = 21$ then $21 \rightarrow 10 \rightarrow 5 \rightarrow 2 \rightarrow 1$ which means the intermediate value is odd twice.
- Compare with the binary representation $21 = 1011$.
- Clearly $\beta(n)$ is at most equal to the number of bits in the binary representation of n which is $\log n$
- \bullet So even in the general case the complexity is $\Theta(\log n)$.

General case

• In general the problem has the following recursion relation

$$
T(n) = T(\lfloor n/2 \rfloor) + 4 + (n \mod 2)
$$

• We will show that the general form

$$
T(n) = T(\lfloor n/2 \rfloor) + M + (n \mod 2) \tag{1}
$$

Has solution

$$
T(n) = M\lfloor \log n \rfloor + \beta(n) \tag{2}
$$

- Where $\beta(n)$ is the number of 1's in the binary representation of *n*.
- Using the fact that $\log |n/2| = |\log n| 1$ it is easy to check that [\(2\)](#page-46-0) satisfies [\(1\)](#page-46-1).

Fibonacci: Take Three

- The previous method for exponentiation can be used to compute Fibonacci (n) in $O(\log n)$.
- The key is that

$$
\left(\begin{array}{cc} F_{n+1} & F_n \\ F_n & F_{n-1} \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right)^n
$$

- \bullet The above is shown by induction on n.
- \bullet We know how to compute the power in log n.

4日)

Maximum Subarray Sum

 \bullet Given an array A of n elements we ask for the maximum value of

\sum j $k=1$ A_k

For example if A is -2,11,-4,13,-5,-2 then the answer is $20 = \sum_{k=2}^4$

4 0 8 4

Brute Force

- Compute the sum of all subarrays of an array A of size n and return the largest.
- A subarray starts at index i and ends at index i where $0 \le i \le n$ and $0 \leq j \leq n$.
- Therefore for each possible *i* and *j* compute the sum of $A[i] \dots A[j]$.

```
int maxSubarray(int *A, int n){
  int sum=0, max=A[0];
```

```
for (int i = 0; i < n; i++){
       for (i = i : j < n : j++)sum=0:
           for (int k=i; k\leq i; k++)
                sum+ = A[k];
           if (max<sum)max=sum;
       }
  }
return max;
```
}

Complexity

- To determine the complexity of the brute force approach we can see that there are 3 nested loop therefore the complexity of the problem depends on how many times line 14 is executed
- The number of executions is

$$
\sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \sum_{k=i}^{j} 1 = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} j - i + 1
$$

• To evaluate the first sum let $m = i - i + 1$ then

$$
\sum_{j=i}^{n-1} j - i + 1 = \sum_{m=1}^{n-i} m = (n-i)(n-i+1)/2
$$

• Finally, we get

$$
\sum_{i=0}^{n-1} (n-i)(n-i+1)/2 = \frac{n^3 + 3n^2 + 2n}{6}
$$

= $\Theta(n^3)$

 $\bar{\nu}$ **[Data Structures](#page-0-0) May 31, 2018 52 / 65**

目

÷.

÷. \sim x.

K ロ ▶ K 伊 ▶ K

Divide and Conquer

- **•** general technique that divides a problem in 2 or more parts (divide) and patch the subproblems together (conquer).
- In this context if we divide an array in two subarrays. We have 3 possibilities:
	- **1** max is entirely in the first half
	- max is entirely in the second half
	- **3** max spans both halves.
- Therefore the solution is max(left, right, both)

Both halves

- If the sum spans both halves it means it includes the last element of the first half and the first element of the second half
- This means that the we are looking for the sum of
	- **1** Max subsequence in first half that includes the last element
	- 2 Max subsequence in the second half that includes the first element

$$
S_3 = \max_{\substack{0 \le i < n/2 \\ n/2 \le j < n}} \sum_{k=i}^j A[k]
$$
\n
$$
= \max_{\substack{0 \le i < n/2 \\ n/2 \le j < n}} \left[\sum_{k=i}^{n/2-1} A[k] + \sum_{k=n/2}^j A[k] \right]
$$
\n
$$
= \max_{0 \le i < n/2} \sum_{k=i}^{n/2-1} A[k] + \max_{n/2 \le j < n} \sum_{k=n/2}^j A[k]
$$

4 0 8 4

Computing max that spans both halves

```
computeBoth (A,left,right)
```

```
sum_1 \leftarrow sum_2 \leftarrow 0for i = center to left do
    sum_1 \leftarrow sum_1 + A[i]if sum_1 > max<sub>1</sub> then
     \parallel max<sub>1</sub> \leftarrow sum<sub>1</sub>
     end
```
end

```
for j = center + 1 to right do
     sum_2 \leftarrow sum_2 + A[j]if sum_2 > max_2 then
      \vert max<sub>2</sub> \leftarrow sum<sub>2</sub>
     end
```
end

return $max_1 + max_2$

∢≣ ▶ ≣ ЮQ ∩

Recursive Algorithm

 $maxSubarray(A, left, right)$ center \leftarrow (left + right)/2 $S_1 \leftarrow$ maxSubarray(A, left, center) $S_2 \leftarrow$ maxSubarray(A, center + 1, right) $S_3 \leftarrow computeBoth(A, left, right)$ return max (S_1, S_2, S_3)

 200

K ロ ▶ K 伊 ▶ K

Complexity

- Given an array of size n the cost of the call to $maxSubarray$ is divided into two computations
	- **1** The work of computeBoth which is $\Theta(n)$.
	- **2** Two recursive calls on the problem with half the size
	- Therefore the total cost can be written as

$$
T(n) = 2T(n/2) + \Theta(n)
$$

• to solve the above recurrence, we assume for simplicity that $n = 2^k$

つのへ

• Thus

$$
T(2^{k}) = 2T(2^{k-1}) + C \cdot 2^{k}
$$

= 2(2T(2^{k-2}) + 2^{k-1}) + C \cdot 2^k
= 2²T(2^{k-2}) + 2 \times C \cdot 2^k
=
= 2ⁱT(2^{k-i}) + i \cdot C \cdot 2^k
= 2^kT(1) + k \cdot C \cdot 2^k
= \Theta(n \log n)

Hikmat Farhat Case Contract [Data Structures](#page-0-0) Contract Contract Contract Contract Contract Contract Data Structures May 31, 2018 58 / 65

K ロ > K @ ▶ K 할 > K 할 > 1 할 : X 9 Q Q*

Running time comparison

• There is an $\Theta(n)$ algorithm for max subarray. Can you find it?

Master Theorem (special case)

• A generalization of the previous cases is done using a simplified version of the Master theorem

$$
T(n) = aT(n/b) + \Theta(n^d)
$$

4 0 8

$$
T(n) = aT(n/b) + cn^{d}
$$

= $a[aT(n/b^{2}) + c(n/b)^{d}] + cn^{d}$
= $a^{2}T(n/b^{2}) + cn^{d}(a/b^{d}) + cn^{d}$
= $a^{2}[aT(n/b^{3}) + c(n/b^{2})^{d}] + cn^{d}(a/b^{d}) + cn^{d}$
= $a^{3}T(n/b^{3}) + cn^{d}(a/b^{d})^{2} + cn^{d}(a/b^{d}) + cn^{d}$
= $a^{j}T(n/b^{j}) + cn^{d} \sum_{l=0}^{i-1} (a/b^{d})^{l}$

The above reaches $\mathcal{T}(1)$ when $b^k=n$ for some $k.$ We get

Þ

 299

K ロ ▶ K 伊 ▶ K

÷.

$$
T(n) = a^{k} T(1) + cn^{d} \sum_{l=0}^{k-1} (a/b^{d})^{l}
$$

There are three cases

\n
$$
a = b^d
$$
\n

\n\n $a < b^d$ \n

\n\n $a < b^d$ \n

$$
3\, a > b^a
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 \equiv 990

case 1: $a = b^d$

If $a=b^d$ (i.e $\frac{a}{b^d}=1)$ then we get $T(n) = a^k T(1) + cn^d · k$

Since $k = \log_b n$ then

$$
T(n) = a^{\log_b n} T(1) + cn^{d} \log_b n
$$

= $n^{\log_b a} T(1) + cn^{d} \log_b n$
= $n^{d} T(1) + cn^{d} \log_b n$
= $\Theta(n^{d} \log n)$

KEN E DAR

K ロ ト K 何 ト K ヨ

case 2: $a < b^d$

$$
T(n) = a^{k} T(1) + cn^{d} \sum_{l=0}^{k-1} (a/b^{d})^{l}
$$

$$
= a^{k} T(1) + cn^{d} \frac{(a/b^{d})^{k} - 1}{(a/b^{d}) - 1}
$$

for large n , i.e. $n \to \infty$ then $k = \log_b n \to \infty$ and since $a < b^d$ then $a/b^d \rightarrow 0$ Therefore

$$
T(n) = n^{\log_b a} T(1) + cn^d
$$

but $a < b^d \Rightarrow \log_b a < d$ and finally

$$
T(n) = \Theta(n^d)
$$

 200

 4 ロ \rightarrow 4 \overline{P} \rightarrow 4 \overline{P} \rightarrow

case 3: $a > b^d$

In this case we can write

$$
T(n) = ak \frac{a}{b} T(n)
$$

= $n^{\log_b a} T(1) + gn^d (a/b^d)^k$
= $n^{\log_b a} T(1) + gn^d (a/b^d)^{log_b n}$
= $n^{\log_b a} T(1) + gn^d (a/b^d)^{log_b n}$
= $n^{\log_b a} T(1) + gn^d n^{\log_b (a/b^d)}$
= $n^{\log_b a} T(1) + gn^d n^{(-d + log_b a)}$
= $\Theta(n^{\log_b a})$

 $=$ 940

 $A \sqcup B$ $A \sqcap B$ $B \rightarrow A \sqsupseteq B$

 $d = 1 - 1 - 1$