Data Structures Time Complexity and Formal Notations

Hikmat Farhat

May 31, 2018

Hikmat Farhat

Data Structures

- Given an algorithm to solve a problem we ask
- Is it efficient?
- We seek a sensible definition of efficiency
- How much work if the input doubles in size?
- For large input sizes can our algorithm solve the problem in a reasonable time?

Polynomial Time

• Efficient algorithm = polynomial in the size of the input

Definition

Polynomial Time: for every input of size $n \exists a, b$ such that number of computation steps $< an^b$

- a and b are constants that do not depend on n
- True, some algorithms are polynomials with *a* and/or *b* very large
- but for the majority of algorithms, *a* and *d* are relatively small

Why Polynomial Time ?

	п	$n \log_2 n$	n^2	n ³	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

- 🔹 🖻

(日)

Worst Case Analysis

- Usually the running time is the running time of the worst case
- One could analysis the <u>average case</u> but it much more difficult and depends on the chosen distribution.
- Therefore an algorithm is efficient if it has a worst case polynomial time
- There are exceptions the most important being the simplex algorithm that works very well in practice

Informal Example: Union Find

- We will introduce the cost of algorithms informally by an example: union find.
- We have a set of *n* points and a set of *m* connections between these points.
- For any two points *p* and *q* we would like to answer the questions: is there a path from *p* to *q*?
- Three different algorithms, with different costs, will be presented to solve the above problem.

Union Find: attempt number 1

- The basic idea is to associate an identifier with every point, so we maintain an array *id*[*n*].
- The identifier of a given point is the group the point belongs to. Initially there are *n* group with one point in each, namely id[i] = i
- When two points, *p* and *q*, are found to be connected their respective groups are merged (union).

• the function Find(p) returns the group id that p belongs to

Instuctions	cost	times
Find (p)	<i>c</i> ₀	1
Return id[p]	С	1

• therefore the cost of function find(p) is constant (i.e. independent of the number of points)

	Instructions	cost	times
1	Union (p,q)	<i>c</i> ₀	1
2	$idp \leftarrow Find(p)$	<i>c</i> ₁	1
3	$\mathit{idq} \leftarrow Find(q)$	c_1	1
4	if $idp = idq$ then	<i>c</i> ₂	1
5	Return	<i>c</i> ₃	1
6	for $i=0$ to $n-1$ do	<i>C</i> 4	n+1
7	if $id[i] = idp$ then	<i>C</i> 5	п
8	$id[i] \leftarrow idq$	<i>c</i> ₆	tp
9	$\textit{count} \leftarrow \textit{count} - 1$	C7	1
10	Return	<i>c</i> ₃	1

• Whe p = q the cost of Union is $c_0 + 2c_1 + c_2 + c_3 = A$ and when $p \neq q$ the total cost of Union is

$$c_0 + 2c_1 + c_2 + c_4(n+1) + c_5n + c_6t_p + c_7 + c_3$$

• Which can be written as $B + Cn + c_6 t_p$ where B and C are constants and t_p is evaluated next

Hikmat Farhat

Computational Cost

- How much does it "cost" to run Find and Union when we have *n* points?
- For Find we already calculated it, it is a constant, d₀ + d₁, independent of the number of points.
- For Union, we still need to calculated *t_p* which is the number of times line 8 is executed.
- Line 8 is executed **at least** once since we know that at least id[p] = idp.
- Also, line 8 is executed at most n − 1 times because at least id[q] ≠ idp.
- Therefore 1 ≤ t_p ≤ n − 1. Inserting the value of t_p in the previous calculation for Union we get: B + Cn + c₆ ≤ Cost ≤ (B − c₆) + (C + c₆)n
- Rearranging terms we get

$$\alpha + \beta \mathbf{n} \le \mathbf{Cost} \le \gamma + \delta \mathbf{n}$$

Quick Union

- A different approach is to organize all related points in a tree structure.
- Two points belong to the same group iff they belong to the same tree.
- A tree is uniquely identified by its root.
- The array *id*[] has a different meaning: *id*[*i*] = *k* means that site *k* is the parent of site *i*.
- Only the root of a tree has the property id[i] = i;
- In this case *find*(*p*) returns the root of the tree that *p* belongs to.

Quick Union Pseudo Code

```
Find(p)
while id[p] \neq p do
    p = id[p]
end
return p
Union(p,q)
proot \leftarrow Find(p)
qroot \leftarrow Find(q)
if proot = groot then
    return
end
id[proot] \leftarrow qroot
count \leftarrow count - 1
```

- ∢ ≣ ▶

- ∢ ≣ ▶

Quick Union Cost

- The cost of Find(p) is 2d + 1 where d is the depth of node p.
- This means that the cost of Union(p, q) is between $(2d_p + 1) + (2d_q + 1) + 1$ and $(2d_p + 1) + (2d_q + 1) + 3$.
- The problem is that in some cases the tree degenerates into a linear list.
- In that case the height=size and instead of getting log *n* behavior we get *n*.
- To avoid such a situation we try to keep the trees **balanced**.
- We do this by always attaching the small tree to the large one.
- to this end we introduce a variable *tsize* initialized to 1.

Union Find: take 3

```
Union(p,q)

proot \leftarrow Find(p)

qroot \leftarrow Find(q)

if proot = qroot then

\mid return
```

end

```
 \begin{array}{l|l} \textbf{if } tsize[proot] > tsize[qroot] \textbf{ then} \\ & id[qroot] \leftarrow proot \\ & tsize[proot] \leftarrow tsize[proot] + tsize[qroot] \\ \end{array}
```

else

```
id[proot] \leftarrow qroot
tsize[qroot] \leftarrow tsize[proot] + tsize[qroot]
```

end

```
count \leftarrow count - 1
```

Weighted Quick Union

- We have shown that in the quick union version UnionFind, "find(p)" costs 2d + 1 where d is the depth of node p.
- we will now show that during the computation of the weighted quick union for *N* sites, the depth of ANY node is at most log *N*.
- It is sufficient to show that the height of ANY tree of size k is at most log k (this is not the case in the original quick union where the height can be up to k 1)

Proof

- By induction on the size of the tree.
- Base case: k = 1 then there is only one node and the height is log k = 0.
- Assume that for any tree, T of size i < n, the height of T, h_i is at most log i and consider two trees of size i ≤ j.
- So we have $h_i \leq \log i$ and $h_j \leq \log j$.

- The size of the combined tree is i + j = k.
- Using the weighted quick union method we know that the height of the combined tree is at most max(1 + log i, log j) (why?)
- in the first case $1 + \log i = \log 2i \le \log(i+j) = \log k$
- in the second case $\log j \leq \log(i+j) = \log k$.

< □ > < 同 > < 回 > < □ > <

Asymptotic Growth of Functions

Definition

<u>Big Oh</u>: The set O(g(n)) is defined as all functions f(n) with the property $\exists c, n_0$ such that $f(n) \leq cg(n)$ for all $n \geq n_0$

Figure : Graphical definition of O taken from the CLRS book

	_	
 Lana at		who at
NIIIa	ιга	l la l

Example

•
$$f(n) = 2n^2 + n = O(n^2)$$
 because let $c = 3$ and $n_0 = 1$
 $\forall n \ge n_0 = 1$
 $n \le n^2$
 $2n^2 + n \le 3n^2$
 $f(n) \le cn^2$
 $f(n) = O(n^2)$

• On the other hand $f(n) = 2n^2 + n \neq O(n)$

3

< ∃⇒

(日)

Definition

<u>Big Omega</u>: The set $\Omega(g(n))$ is defined as all functions f(n) with the property $\exists c, n_0$ such that $f(n) \ge cg(n)$ for all $n \ge n_0$

Figure : Graphical definition of $\boldsymbol{\Omega}$ taken from the CLRS book

		_	
L m	21	- 32	

Example

- Consider $f(n) = \sqrt{n}$ and $g(n) = \log n$.
- $f(n) = \Omega(g(n))$ because for $c = 1, n_0 = 16$ we have

$$\sqrt{16} = 4 = \log 2^4$$

• Note that between n=4 and n=16 the value of $\log_2 n \ge \sqrt{n}$

- Abuse of notation: if $h(n) \in O(g(n))$ we write h(n) = O(g(n))
- similarly if $h(n) \in \Omega(g(n))$ we write $h(n) = \Omega(g(n))$
- If h(n) = O(g(n)) we say g(n) is an <u>upper bound</u> for f(n).
- If $h(n) = \Omega(g(n))$ we say g(n) is a lower bound for f(n).

イロト イポト イヨト ・ヨ

Definition

<u>Big</u> Θ : The set $\Theta(g(n))$ is defined as all functions f(n) with the property $\exists c_1, c_2, n_0$ such that $c_1g(n) \leq f(n) \leq c_2g(n)$ for all $n \geq n_0$

Figure : Graphical definition of Θ taken from the CLRS book

_		 _	
	1 man	 22	

- 4 同 6 4 日 6 4 日 6

Example

• Consider $c_1 = 1$, $c_2 = 3$ and $n_0 = 1$ it is obvious that

$$c_1n^2 \leq 2n^2 + n \leq c_2n^2 \ \forall n \geq n_0$$

- We can show that $f(n) = \Theta(g(n))$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$
- If $f(n) = \Theta(g(n))$ we say g(n) is a <u>tight bound</u> for f(n).

イロト イポト イヨト ・ヨ

Definition

<u>Little Oh</u>: The set o(g(n)) is defined as all functions f(n) with the property for all c, $\exists n_0$ such that f(n) < cg(n) for all $n \ge n_0$

We can show that the above definition is equivalent to

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

120	e mai	- Far	hat

Definition

Little omega: The set $\omega(g(n))$ is defined as all functions f(n) with the property for all c, $\exists n_0$ such that cg(n) < f(n) for all $n \ge n_0$

We can show that the above definition is equivalent to

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

Examples

$$\lim_{n\to\infty}\frac{2n^2+n}{n}=\infty$$

$$\lim_{n\to\infty}\frac{2n^2+n}{n^3}=0$$

Hikmat Farhat

May 31, 2018 28 / 65

- 2

Using Limits

- Sometimes it is easier to determine the relative growth rate of two functions f(n) and g(n) by using limits
 - if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$ then f(n) = o(g(n)).

• if
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$$
 then $f(n) = \omega(g(n))$.

- if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$, for some constant c, then $f(n) = \Theta(g(n))$.
- Can we always do that?No
- In many situations the complexity cannot be written in an analytic form.

Exponential vs Polynomial vs Logarithmic

it is easy to show that for all a>0 , b>1

$$\lim_{n\to\infty}\frac{n^a}{b^n}=0$$

And polynomials grow faster(use $m = \log n$ and the previous result) than logarithms $(\log^a x = (\log x)^a)$

$$\lim_{n\to\infty}\frac{\log^a n}{n^b}=0$$

Hil	kmat	: Far	hat

Arithmetic Properties

æ

A B >
 A
 B >
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ ► < ∃ ►</p>

Code Fragments

```
sum = 0<br/>for i = 1 \dots n do<br/>| sum \leftarrow sum + 1<br/>end
```

- the operation sum = 0 is independent of the input thus it costs a constant time c₁.
- the operation sum ← sum + 1 is independent of the input thus it cost some constant time c₂.
- Regardless of the input the loop runs n times therefore the total cost is c₁ + c₂n = Θ(n).

The algorithm below for finding the maximum of *n* numbers is $\Theta(n)$. Input: a_1, \ldots, a_n Output: $max(a_1, \ldots, a_n)$

```
Initially max = a_1
for i = 2...n do
if a_i > max then
max = a_i
end
```

end

- Try 89,47,80,50,67,102 and 19,15,13,10,8,3
- Do they have the "same" running time?

- A 🗐 🕨

Sequential Search

Given an array a check if element x is in the array.

```
for i = 1 \dots n do

if a[i] = x then

return True

end
```

end

return False

- What is the running time of the above algorithm?
- Consider the two extreme cases: x is the first or the last element of the array.

- If x is the first element than we perform a single operation. This is the best-case.
- If x is the <u>last</u> element than we perform <u>n</u> operation. This is the worst-case.
- Now if we run the algorithm on many different (random) input and average out the results we get the average-case.
- Which one do we use?
 - Depends on the application and the feasibility.
 - Real-time and critical applications usually require worst-case
 - In most other situations we prefer average-case, but difficult to calculate and depends on the random distribution!
- In light of the above, what is the best-case, average-case and worst-case for the compute max algorithm we had before?

Nested Loops

- What is the complexity of nested loops?
- The cost of a stmt in a nested loop is the cost of the statement multiplied by the product of the size of the loops

```
for i = 1 \dots n do

for j = 1 \dots m do

\mid k \leftarrow k + 1

end

end
```

• The cost is O(n * m)

Factorial

- Consider the recursive implementation of the factorial function. factorial(n)
- The cost of size n? T(n) = T(n-1) + C
- Thus $T(n) = \Theta(n)$.

3

Complexity of Factorial

$$T(n) = T(n-1) + C$$

= T(n-2) + 2C
= ...
= T(n-i) + i * C
= ...
= T(1) + (n-1) * C
= n * C + T(1) - C
= \Theta(n)

Hikmat Farhat

May 31, 2018 38 / 65

æ

Fibonacci

• Computing the *n*th Fibonacci number can be done recursively fib(*n*)

```
if n = 0 then
    return 0
end
if n = 1 then
    return 1
end
return fib(n-1)+fib(n-2)
```

• If T(n) is the cost of computing Fib(n) then

$$T(n) = T(n-1) + T(n-2) + 3$$

We will show, by induction on n, that T(n) ≥ fib(n) i.e. the cost of computing Fibonacci number n is greater than the number itself.

- We are assuming that all operations cost the same so the 3 comes from executing the two if stmts and the sum.
- First the base cases. If n = 0 then the algorithm costs 1 (if stmt), if n = 1 it costs 2 (2 if stmts) thus T(0) = 1, T(1) = 2.
- In the other cases we have T(n) = T(n-1) + T(n-2) + 3. This means $T(2) = 6 \ge fib(2) = 1$.
- Assume that $T(n) \ge fib(n)$ then

$$egin{aligned} T(n+1) &= T(n) + T(n-1) + 3 \ &\geq fib(n) + fib(n-1) \ &\geq fib(n+1) \end{aligned}$$
 hyp.

• One can show that (for $n \ge 5$) $fib(n) \ge (3/2)^n$ thus $T(n) \ge (3/2)^n$ which is exponential!

Fibonacci: take two

- can we compute Fibonacci numbers more efficiently?
- It turns out yes. By just "remembering" the values we already computed.
- A simple iterative algorithm

```
FiboIter(n)

f[0] \leftarrow 0

f[1] \leftarrow 1

for i \leftarrow 2 to n do

| f[i] \leftarrow f[i-1] + f[i-2]

end
```

Comparison

- We had two different algorithms to compute Fibonacci number n
- One was $\Omega((3/2)^n)$ while the other was O(n).
- In the first one we did not need to "save" anything.
- In the second algorithm we used an array of size n: space complexity: O(n).
- This is a trade off between time and space.
- Obviously in this case the trade off is worth it.

Exponentiation

- Exponentiation is another example where the simplest algorithm is much less than optimal.
- The simplest way to compute x^n is $\underline{x \dots x}$

n times

- therefore the complexity of the above algorithm is $\Theta(n)$.
- We can do (much) better by observing that
- if *n* is even then $x^n = (x^{n/2})^2$
- if n is odd then $x^n = (x^{n/2})^2 \cdot x$
- Note the integer division, $n/2 \equiv \lfloor n/2 \rfloor$, e.g. 7/2=3

Implementation

```
int power(int x, int n){
    if(n==0)return 1;
    int half=power(x,n/2);
    half=half*half;
    if( (n%2)!=0)half=half*x;
    return half;
}
```

3

A 3 b

< 4 ₽ ► < 3 ► ►

Complexity of Exponentiation

- The analysis is simplified by assuming $n = 2^k$ (other cases are similar, albeit more complicated)
- Assume: n/2, half * half and the if stmt each costs 1.
- for a total of 4 (including the test for x==0) when *n* is even and 5 when it is odd.
- Let T(n) be the computational cost for x^n then

$$T(n) = T(n/2) + 4$$

= $T(n/4) + 8$
= $T(n/2^i) + 4i$
= ...
= $T(1) + 4k$
= $\Theta(k) = \Theta(\log n)$

Exponentiation

- In the general case we perform one extra computation every time the exponent is odd.
- Let $\beta(n)$ be the number of times such computation is performed.
- It is easy to check that β(n) = is one less than the number of 1's in the binary representation of n
- For example if n = 21 then $21 \rightarrow 10 \rightarrow 5 \rightarrow 2 \rightarrow 1$ which means the intermediate value is odd twice.
- Compare with the binary representation 21 = 1011.
- Clearly β(n) is at most equal to the number of bits in the binary representation of n which is log n
- So even in the general case the complexity is $\Theta(\log n)$.

General case

• In general the problem has the following recursion relation

$$T(n) = T(\lfloor n/2 \rfloor) + 4 + (n \mod 2)$$

We will show that the general form

$$T(n) = T(\lfloor n/2 \rfloor) + M + (n \mod 2) \tag{1}$$

Has solution

$$T(n) = M \lfloor \log n \rfloor + \beta(n)$$
(2)

- Where $\beta(n)$ is the number of 1's in the binary representation of n.
- Using the fact that ⌊log⌊n/2⌋⌋ = ⌊log n⌋ − 1 it is easy to check that
 (2) satisfies (1).

Fibonacci: Take Three

- The previous method for exponentiation can be used to compute Fibonacci (n) in $O(\log n)$.
- The key is that

$$\left(\begin{array}{cc}F_{n+1}&F_n\\F_n&F_{n-1}\end{array}\right) = \left(\begin{array}{cc}1&1\\1&0\end{array}\right)^n$$

- The above is shown by induction on *n*.
- We know how to compute the power in log *n*.

Maximum Subarray Sum

• Given an array A of n elements we ask for the maximum value of

$\sum_{k=i}^{j} A_k$

• For example if A is -2,11,-4,13,-5,-2 then the answer is $20 = \sum_{k=2}^{4}$

Brute Force

- Compute the sum of all subarrays of an array A of size n and return the largest.
- A subarray starts at index *i* and ends at index *j* where $0 \le i < n$ and $0 \le j < n$.
- Therefore for each possible *i* and *j* compute the sum of $A[i] \dots A[j]$.

```
int maxSubarray(int *A, int n){
    int sum=0, max=A[0];
    for(int i=0;i<n;i++){
        for(j=i;j<n;j++){
            sum=0;
            for(int k=i;k<=j;k++)
                 sum+=A[k];</pre>
```

Complexity

- To determine the complexity of the brute force approach we can see that there are 3 nested loop therefore the complexity of the problem depends on how many times line 14 is executed
- The number of executions is

$$\sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \sum_{k=i}^{j} 1 = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} j - i + 1$$

• To evaluate the first sum let m = j - i + 1 then

$$\sum_{j=i}^{n-1} j - i + 1 = \sum_{m=1}^{n-i} m = (n-i)(n-i+1)/2$$

• Finally, we get

$$\sum_{i=0}^{n-1} (n-i)(n-i+1)/2 = \frac{n^3 + 3n^2 + 2n}{6}$$
$$= \Theta(n^3)$$

-н	1000	 2.0	20
	VIII 6	 an	l a

May 31, 2018 52 / 65

æ

< ≣ >

・ロト ・日下・ ・日下

Divide and Conquer

- general technique that divides a problem in 2 or more parts (divide) and patch the subproblems together (conquer).
- In this context if we divide an array in two subarrays. We have 3 possibilities:
 - 1 max is entirely in the first half
 - 2 max is entirely in the second half
 - 3 max spans both halves.
- Therefore the solution is max(left,right,both)

Both halves

- If the sum spans both halves it means it includes the last element of the first half and the first element of the second half
- This means that the we are looking for the sum of
 - Max subsequence in first half that includes the last element
 - 2 Max subsequence in the second half that includes the first element

$$S_{3} = \max_{\substack{0 \le i < n/2 \\ n/2 \le j < n}} \sum_{\substack{k=i \\ k=i}}^{j} A[k]$$

=
$$\max_{\substack{0 \le i < n/2 \\ n/2 \le j < n}} \left[\sum_{\substack{k=i \\ k=i}}^{n/2-1} A[k] + \sum_{\substack{k=n/2 \\ n/2 \le j < n}}^{j} A[k] \right]$$

=
$$\max_{\substack{0 \le i < n/2 \\ k=i}} \sum_{\substack{k=i \\ k=i}}^{n/2-1} A[k] + \max_{\substack{n/2 \le j < n \\ k=n/2}} \sum_{\substack{k=n/2 \\ k=n/2}}^{j} A[k]$$

Computing max that spans both halves

```
computeBoth (A,left,right)
```

```
\begin{array}{c} sum_1 \leftarrow sum_2 \leftarrow 0\\ \textbf{for } i = center \textbf{ to } left \textbf{ do}\\ & \\ sum_1 \leftarrow sum_1 + A[i]\\ \textbf{if } sum_1 > max_1 \textbf{ then}\\ & \\ & \\ max_1 \leftarrow sum_1\\ \textbf{end} \end{array}
```

end

```
for j = center + 1 to right do

sum_2 \leftarrow sum_2 + A[j]

if sum_2 > max_2 then

max_2 \leftarrow sum_2

end
```

end

return $max_1 + max_2$

```
\begin{array}{l} \max \texttt{Subarray}(A, \textit{left}, \textit{right}) \\ \textit{center} \leftarrow (\textit{left} + \textit{right})/2 \\ S_1 \leftarrow \max \texttt{Subarray}(A, \textit{left}, \textit{center}) \\ S_2 \leftarrow \max \texttt{Subarray}(A, \textit{center} + 1, \textit{right}) \\ S_3 \leftarrow \textit{computeBoth}(A, \textit{left}, \textit{right}) \\ \textit{return} \max(S_1, S_2, S_3) \end{array}
```

Complexity

- Given an array of size *n* the cost of the call to *maxSubarray* is divided into two computations
 - **1** The work of *computeBoth* which is $\Theta(n)$.
 - 2 Two recursive calls on the problem with half the size
 - Therefore the total cost can be written as

$$T(n) = 2T(n/2) + \Theta(n)$$

• to solve the above recurrence, we assume for simplicity that $n = 2^k$

• Thus

$$T(2^{k}) = 2T(2^{k-1}) + C \cdot 2^{k}$$

= 2(2T(2^{k-2}) + 2^{k-1}) + C \cdot 2^{k}
= 2^{2}T(2^{k-2}) + 2 \times C \cdot 2^{k}
=
= 2^{i}T(2^{k-i}) + i \cdot C \cdot 2^{k}
= 2^{k}T(1) + k \cdot C \cdot 2^{k}
= $\Theta(n \log n)$

Hikmat Farhat

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣

Running time comparison

• There is an $\Theta(n)$ algorithm for max subarray. Can you find it?

 2 mag	ark	13
NILIRA	arr	

Master Theorem (special case)

• A generalization of the previous cases is done using a **simplified** version of the Master theorem

$$T(n) = aT(n/b) + \Theta(n^d)$$

$$T(n) = aT(n/b) + cn^{d}$$

= $a \left[aT(n/b^{2}) + c(n/b)^{d} \right] + cn^{d}$
= $a^{2}T(n/b^{2}) + cn^{d}(a/b^{d}) + cn^{d}$
= $a^{2} \left[aT(n/b^{3}) + c(n/b^{2})^{d} \right] + cn^{d}(a/b^{d}) + cn^{d}$
= $a^{3}T(n/b^{3}) + cn^{d}(a/b^{d})^{2} + cn^{d}(a/b^{d}) + cn^{d}$
= $a^{i}T(n/b^{i}) + cn^{d}\sum_{l=0}^{i-1} (a/b^{d})^{l}$

The above reaches T(1) when $b^k = n$ for some k. We get

< ∃⇒

э

Image: A matched black

э.

$$T(n) = a^k T(1) + cn^d \sum_{l=0}^{k-1} (a/b^d)^l$$

There are three cases

•
$$a = b^d$$

• $a < b^d$

æ

<ロ> <同> <同> < 同> < 同>

case 1: $a = b^d$

If $a = b^d$ (i.e $\frac{a}{b^d} = 1$) then we get $T(n) = a^k T(1) + cn^d \cdot k$

Since $k = \log_b n$ then

$$T(n) = a^{\log_b n} T(1) + cn^d \log_b n$$
$$= n^{\log_b a} T(1) + cn^d \log_b n$$
$$= n^d T(1) + cn^d \log_b n$$
$$= \Theta(n^d \log n)$$

Hikmat Farhat

< □ > < 同 > < 回 >

case 2: $a < b^{d}$

$$T(n) = a^{k} T(1) + cn^{d} \sum_{l=0}^{k-1} (a/b^{d})^{l}$$
$$= a^{k} T(1) + cn^{d} \frac{(a/b^{d})^{k} - 1}{(a/b^{d}) - 1}$$

for large n, i.e. $n \to \infty$ then $k = \log_b n \to \infty$ and since $a < b^d$ then $a/b^d \to 0$ Therefore

$$T(n) = n^{\log_b a} T(1) + c n^d$$

but $a < b^d \Rightarrow \log_b a < d$ and finally

$$T(n) = \Theta(n^d)$$

case 3: $a > b^d$

In this case we can write

$$T(n) = a^{k} \frac{a}{b} T(n) = a^{k} T(1) + gn^{d} (a/b^{d})^{k} = n^{\log_{b} a} T(1) + gn^{d} (a/b^{d})^{\log_{b} n} = n^{\log_{b} a} T(1) + gn^{d} (a/b^{d})^{\log_{b} n} = n^{\log_{b} a} T(1) + gn^{d} n^{\log_{b} (a/b^{d})} = n^{\log_{b} a} T(1) + gn^{d} n^{(-d+\log_{b} a)} = \Theta(n^{\log_{b} a})$$

イロト 不得 トイヨト イヨト 二日

· · · · · ·