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Hamiltonian Cycle

A Hamiltonian cycle in a graph G = (V ,E ) is a sequence of
non-repeating vertices (except the first and last) such that each pair
of vertices are connected in the graph.

For example one Hamiltonian cycle in the graph below is the sequence
s, t, y , x , z , s (there are others, e.g. s, y , t, x , z , s)
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Decision Problems

While the graph in the previous slide contains multiple Hamiltonian
cycles, the one below does not contain any

s

t x

y z

The question of whether a graph contains a Hamiltonian cycle is
called a decision problem.
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Formally

Define the set H as:

H = {the set of all graphs G |G has a Hamiltonian cycle}
Then given a graph x we need to decide if x ∈ H or x /∈ H.

To do so we need an algorithm A that takes a graph x as input and
outputs yes or no depending on whether x ∈ H or not:

1 A(x) = yes then x ∈ H
2 A(x) = no then x /∈ H

One can find an algorithm A to solve the problem but, unfortunately,
no one has been able to find an efficient one.

In fact there are many interesting(decision and optimization)
problems that no one has found an efficient algorithm for yet.
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Decision vs Optimization problems
Some problems are not decision problems, rather, they can be
classified as optimization problems, e.g. the maximal independent set.

Given a graph G = (V ,E ) an independent set is a subset S ⊆ V of
vertices such that for all u, v ∈ S we have (u, v) /∈ E .

In the graph below {t, z} is I.S. as is {y , x} but we want the largest
one i.e. {s, x , z}
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Any optimization problem, like the maximal independent set, can be
recast as a sequence of decision problems.

In the case of the I.S. in the previous graph we convert it into a
sequence of decision problems:

We know there is always an IS of size 1

Is there an IS of size 2? yes

Is there an IS of size 3?yes

IS there an IS of size 4? no

Therefore the maximal independent set has size 3.

Note: since the size of the independent set cannot be more that
|V | = n then if the decision problem has a polynomial time algorithm
then the optimization problem will also have a polynomial time
algorithm.
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Verifiers

As mentioned before, many of the decision problems do not (yet)
have an efficient algorithm.

Can we find a common characteristic for some of these problems?

It turns out that for many of them, if we are given a potential
solution, we can efficiently verify that it is indeed a solution.
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Let H be the set of graphs that have a Hamiltonian cycle.

Let x be an encoding of a graph and s be a list of vertices of x
(certificate).

B(x , s) is called a verifier of H if the following two conditions hold:
1 for all x ∈ H ∃s such that B(x , s)=yes
2 for all x /∈ H and ∀s, B(x , s) =no

If B is a polynomial time algorithm and |s| = O(|x |c) for some c then
B is said to be an efficient verifier of H
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Class NP

We define the class of problems NP (Non-deterministic polynomial
time) as all the problems that have efficient verifiers

As an example, the following polynomial algorithm is an efficient
verifier for H.

Given a graph G = (V ,E ) and a list of vertices L

First check that the first and the last element of L are the same, if
not return false

Then check that no vertex is repeated in L (except the first and last)

Finally check that consecutive vertices are connected in G

The pseudo-code for the above is given in the next slide.
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Hamiltonian Cycle has efficient verifier:HC ∈ NP
Verify(G , L)

/* check first and last vertex are equal */

if L[1] 6= L[n] then
return false

/* check that no vertex is repeated (except first and

last) */

for i = 1 to n − 1 do
for j = i + 1 to n − 1 do

if L[i ] = L[j ] then
return false

/* check that consecutive vertices are connected */

for i = 1 to n − 1 do
if (L[i ], L[i + 1]) /∈ E then

return false

/* passed all checks, L is a Hamiltonian cycle */

return true

Hikmat Farhat Analysis of Algorithms April 7, 2020 10 / 68



IS has efficient verifier: IS ∈ NP
Given a graph G = (V ,E ) the following polynomial time algorithm
verifies that L is an independent set of size k

Verify(G , L, size)

/* check that size is k */

if size 6= k then
return false

/* check that no vertex is repeated and no two are

connected */

for i = 1 to n − 1 do
for j = i + 1 to n do

if L[i ] = L[j ] then
return false

if (L[i ], L[j ]) ∈ E then
return false

/* passed all checks, L is an independent set of size k
*/

return true
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Boolean Satisfiability

A boolean formula is an expression made of boolean variables that
can be assigned the values of TRUE or FALSE ( 0 or 1), boolean
operators ∧ (conjunction),∨ (negation),¬ (disjunction) and possibly
parenthesis.

A literal is a variable or a negation of a variable (i.e. x or ¬x).

A clause is a disjunction of literals (or a single literal).

A boolean formula is said to be satisfiable if there is an assignment to
the variables such that the expression evaluates to true.

The boolean satisfiability problem (SAT) is the problem of
deciding whether a boolena formula is satisfiable.

A special case of SAT is 3SAT, when the formula is formed by a
conjunction of clauses, where each clause has at most three literals
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SAT , 3SAT ∈ NP

Let n be the number of variables and k be the number of clauses.
The double array F [i ][j ] gives the index of variable j in clause i .

For example F [2][3] = 7 means that the third variable in clause 2 is x7

A[i ] is the value (0 or 1) assigned to variable xi

The following is an efficient verifier for 3SAT where A is an array of
size n containing the value of the n boolean variables (assignment)
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Efficient verifier for 3SAT

Verify(F ,A)

/* check that each clause is satisfied */

for i = 1 to k do
sum← 0
for j = 1 to 3 do

sum← sum + A[F [i ][j ]]
if sum = 0 then

return false

/* all clauses are satisifed */

return true
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Example

Consider the following 3SAT formula with three clauses and five
variables

(x1 ∨ x2 ∨ ¬x5) ∧ (x3 ∨ ¬x2 ∨ ¬x4) ∧ (¬x4 ∨ ¬x3 ∨ ¬x2)

The formula is satisfied with the assignment x1 = 1, x2 = 0
(regardless of the values of x3,x4 and x5)

One can convince you that the formula is satisfiable by supplying a
short proof which in this case the assignment of the variables.

You can check (in polynomial time, refer to the previous slides) that
the supplied assignment indeed makes the formula satisfiable.

Whereas the converse is not true. Consider the formula below
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Unsatisfiable formula

How can one convince you that the formula below is unsatisfiable?
Can they supply a short proof?

You have to check all possibilities

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧ (x3 ∨ ¬x1)∧ (¬x1 ∨ ¬x2 ∨ ¬x3)
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Using Z3

Even though SAT is NP-complete, which means no polynomial time
algorithm exists yet for solving it, many SAT solvers are very efficient
solvers of SAT instances

They use backtracking (later) and heuristics.

We will give examples using Z3

The input to Z3 is a set of disjunctive clauses. This means that the
input formula is a conjunctive normal form (CNF).
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Example1
The satisfiable formula below

(x1 ∨ x2 ∨ ¬x5) ∧ (x3 ∨ ¬x2 ∨ ¬x4) ∧ (¬x4 ∨ ¬x3 ∨ ¬x2)

Is input into a file, say formula.cnf, for Z3 as follows

(declare-const x1 Bool)

(declare-const x2 Bool)

(declare-const x3 Bool)

(declare-const x4 Bool)

(declare-const x5 Bool)

(assert (and

(or x1 x2 (not x5))

(or x3 (not x2) (not x4))

(or (not x4) (not x3) (not x2))

)

)

(check-sat)

(get-model)
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run ”z3 formula.cnf”. The first line says ”sat” which means the
formula is satisfiable and then it prints the assignment.

sat

(model

(define-fun x3 () Bool

false)

(define-fun x2 () Bool

false)

(define-fun x1 () Bool

false)

(define-fun x5 () Bool

false)

(define-fun x4 () Bool

false)

)
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The unsatisfiable formula

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧ (x3 ∨ ¬x1)∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

Is written as

(declare-const x1 Bool)

(declare-const x2 Bool)

(declare-const x3 Bool)

(assert (and

(or x1 x2 x3)

(or x1 (not x2) )

(or x2 (not x3) )

(or x3 (not x1))

(or (not x1) (not x2) (not x3))

)

)

(check-sat)

(get-model)
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when we run z3 on the above input we get

unsat

(error "line 13 column 10: model is not available")
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Polynomial time reductions

Let Y and X be decision problems.

We say that Y is polynomial time reducible to X , and write Y ≤p X if

If there exists a function (or procedure) f such that
1 f is polynomial time
2 v ∈ Y ⇔ f (v) ∈ X

The importance of reduction is that if one has a polynomial time
algorithm for X it can be used to solve instances of Y in polynomial
time.
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As shown in the figure below, a reduction f maps all instances in X to
instances in Y and all instances not in X to instances not in Y .

Y

¬Y

X

¬X

f

f
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Theorem: If Y ≤p X and X ∈ P then Y ∈ P.

Proof.

X ∈ P then there exists a polynomial time algorithm B that decides
X . This means that for any u, B(u) = True ⇔ u ∈ X .

Y ≤p X then there exists a polynomial time function f such that
v ∈ Y ⇔ f (v) ∈ X .

Let v be any instance. Compute f (v) = u in polynomial time.

Decide u in polynomial time using B

B(u) =true then f (v) = u ∈ X and therefore v ∈ Y return true

B(u) =false then f (v) /∈ X and therefore v /∈ Y return false

The above is a procedure to decide in polynomial time any instance y
of Y and thus Y ∈ P.

We are actually more interested in the contrapositive
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Hard problems

Theorem: If Y ≤p X and Y /∈ P then X /∈ P.

Proof.

By contradiction. Assume that X ∈ P then there exists a polynomial
time algorithm to decide X .

Since Y ≤P X then using the previous theorem we know there exists
a polynomial time algorithm to decide Y which is a contradiction
since Y /∈ P.

The above theorem gives us a notion of ”hardness” of a problem.

Y ≤P X can be interpreted that X is at least as ”hard” to solve as Y .

This observation lead us to the important class of problems called
NP-complete.
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NP-complete Problems

A problem X is said to be NP-complete if
1 X ∈ NP
2 For all Y ∈ NP we have Y ≤p X .

So in a sense NP-complete problems are the ”hardest” problems in
NP.

So far we have shown the following relations
1 P ⊆ NP
2 NP-complete ⊆ NP.

But are P and NP-complete proper susbsets of NP ?

Most researchers believe so, but it hasn’t been proved yet!
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SAT is NP-complete

Theorem (Cook 1971): SAT is NP-complete.

We will use 3SAT as our starting point to show some of well known
problems to be NP-complete
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SAT to 3SAT

Any formula φ in CNF can be transformed into a formula ψ in CNF
with each clause having at most three literals such that ψ is
satisfiable iff φ is satisfiable.

The transformation works as follows:
1 Given a clause C = (l1 ∨ l2 ∨ A) where l1 and l2 are literals and A is a

disjunction of k literals.
2 Introduce a new variable y and convert C into

C ′ = (l1 ∨ l2 ∨ y) ∧ (ȳ ∨ A)
3 Note we started with a clause that has k + 2 literals into two clauses of

size 3 and k + 1.
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Correctness

Suppose that (l1 ∨ l2 ∨ A) is satisfiable then
1 Either (l1 ∨ l2) is satisfiable then set y = 0 so (l1 ∨ l2 ∨ y) ∧ (ȳ ∨ A) is

satisfiable.
2 Or A is satisfiable then set y = 1 so (l1 ∨ l2 ∨ y)∧ (ȳ ∨A) is satisfiable.

Suppose that (l1 ∨ l2 ∨ y) ∧ (ȳ ∨ A) is satisfiable then
1 l1, l2 and A cannot all be false, i.e. one of them is true so (l1 ∨ l2 ∨ A)

is satisfiable.
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Let A = l3 ∨ B then we have (B has k − 1 literals)

(l1 ∨ l2 ∨ y) ∧ (ȳ ∨ l3 ∨ B)

We repeat our construction one more time by adding a variable z

(l1 ∨ l2 ∨ y) ∧ (ȳ ∨ l3 ∨ z) ∧ (z̄ ∨ B)
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We repeat the above procedure until no clauses has more than 3
literals.

Since in the original formula each clause has at most n literals we
need at most O(n) operations to reduce a clause to at most 3 literals.

Starting from k clauses our procedure is O(k · n), clearly polynomial
in the number of variables.

Since SAT is NP-complete and we have a polynomial time reduction
from SAT to 3SAT then 3SAT is NP-complete.
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3SAT≤p Independent Set

We prove that a k-clause 3SAT decision reduces to k-independent set
decision.

For every literal xij , i = 1, . . . , k ,j = 1, 2, 3, create a graph vertex
labeled xij .

Nodes representing literals belonging to the same clause are mutually
connected (see below for clause i)

xi2

xi1

xi3
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For every literal in clause i , xil , if its negation occurs in clause j 6= i
then the vertices representing these two variables are joined with an
edge.

Example below where variable xl2 in clause l is the negation of xi1 in
clause i

xi2

xi1

xi3

xj1

xj2 = ¬xi1

xj3
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Suppose that a k-clause 3SAT instance is satisfiable. Then each
clause has at least one variable set to true. Select from each clause
one variable that is set to true to obtain k variables (not necessarily
distinct but from different clauses) set to true. Now consider the
corresponding set of nodes. Since the 3SAT instance is satisfiable the
set of variables cannot contain a variable and its complement then
nodes corresponding to different clauses are not connected.
Furthermore, since we chose one node (corresponding to a variable)
from every clause implies that the chosen set is independent and has
size k .

Suppose that an independent set of k nodes exists. Then the
variables corresponding to the nodes do not contain any variable and
its negation together therefore it is safe to set the variables to true
which implies that each clause of the 3SAT problem has at least one
true variable, thus the 3SAT instance is satisfiable

Hikmat Farhat Analysis of Algorithms April 7, 2020 34 / 68



Example
Consider the 3SAT formula

φ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3)

It is reduced to an instance of IS as shown below

x1

¬x2 ¬x3

¬x1

x2 x3

x1

x2 ¬x3
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Independent Set ≤p Vertex Cover

Given a graph G = (V ,E ) a subset of vertices S ⊆ V is said to be a
vertex cover iff for every edge (u, v) ∈ E either u ∈ S or v ∈ S .

Usually we look for the smallest vertex cover in a graph.

The corresponding decision problem is: given a graph G = (V ,E ) is
there a vertex cover of size k . Clearly V is a vertex cover of size n.

We show that deciding vertex cover of size k is NP-complete by
reducing it to independent set of size n − k .
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Proof

Suppose that S is a vertex cover. We need to show that V − S is an
independent set.

Assume otherwise, then there exists two vertices u, v ∈ V − S and
(u, v) ∈ E . This implies that both ends of the edge (u, v) do not
belong to S which means that S is not a vertex cover. A
contradiction. Therefore V − S is an independent set.

Conversely assume V − S is an independent set. We need to show
that S is a vertex cover.

Assumed otherwise, then there exists an edge (u, v) ∈ E such that
both u /∈ S and v /∈ S hence u ∈ V − S , v ∈ V − S and (u, v) ∈ E
therefore V − S is not an independent set. A contradiction.
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Independent Set ≤p Clique

Given a graph G = (V ,E ) a clique is a subset of vertices S ⊂ V such
that for any u, v ∈ S we have (u, v) ∈ E .

Next we describe a polynomial time reduction from Independent set
of size k to a clique of size k .

Let G = (V ,E ) be a graph and construct from G a complement
graph G c = (V ,E c) such that (u, v) /∈ E iff (u, v) ∈ E c .

G has an independent set of size k iff G c has a clique of size k .

Proof: Suppose S is an independent set of G of size k we show that
S is a clique of G c of size k . Let (u, v) ∈ S , since S is independent
set of G then (u, v) /∈ E and therefore (u, v) ∈ E c
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3SAT ≤p Clique

Another way of showing that clique is NP complete is a reduction
from 3SAT that is similar to the reduction to independent set.

We will use the reduction from independent set to clique as a guide.

For every literal in every clause we create a vertex. Vertices
corresponding to literals in the same clause are not connected
(opposite for IS). Every node representing a literal in clause i is
connected to every node representing literal in clause j 6= i unless
these literals are complements to each other (again the opposite for
IS).

The above construction gives us that 3SAT with k clauses is
satisfiable iff the corresponding graph has a k clique.
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Useful SAT encoding

Because SAT solvers are very efficient it convenient to reduce many
problems to SAT.

In the previous section we concentrated on reduce SAT (or 3SAT) to
other problems to show them NP-complete.

When looking for a solution usually we would like to perform the
opposite reduction.

To do that it is useful to review some convenient SAT encoding of
common situations
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At least one, two, three,...

Given n boolean variables x1, . . . , xn.

One of the common situations is to require at least k of them to be
true.

We start with a small example and then we generalize.

Suppose we have three variables x1, x2, x3

If we require that at least one is true can be written as a single clause
(x1 ∨ x2 ∨ x3).

what about at least two?three?

At least two (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3)

At least three is just x1 ∧ x2 ∧ x3.
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Generalization

For n variables x1, . . . xn at least k requires all combinations of
n − k + 1 variables.

At least two requires all combinations of n − 2 + 1

For x1, x2, x3, x4 this means all combinations of 3 variables

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

At least three requires all combinations of 4− 3 + 1 variables

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4)

∧(x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x4)
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Python itertools

itertools is a python package that is useful in listing different
combinations of variables

for example to list all combination of 2 and 3 variables from a set of 4
variables we can write

1 i m p o r t i t e r t o o l s
2 v a r s = [ 1 , 2 , 3 , 4 ]
3 f o r ( i , j ) i n i t e r t o o l s . c o m b i n a t i o n s ( v a r s , 2 ) :
4 p r i n t ( i , j )
5

6 f o r ( i , j , k ) i n i t e r t o o l s . c o m b i n a t i o n s ( v a r s , 3 ) :
7 p r i n t ( i , j , k )
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Solving Indepent set

Given a graph (V ,E ) with |V | = n we would like to determine if
there is an independent set of size k ≤ n.

We can reduce this problem to SAT as follows
1 We assign a variable xi to each node i .
2 Since we are looking for size k then at least k variables should be true
3 For each edge (xi , xj) add a constraint that both of them cannot be

true
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Example

The graph below has 4 nodes so we create 4 boolean variables
x1, x2, x3, x4.

We are looking for an independent set of size 2 so we need at least
two variables to be true: all combinations of 4-(2-1)=3

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

x1

x2

x3

x4
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We also need to add the edge constraints

(x̄1 ∨ x̄2) ∧ (x̄1 ∨ x̄4) ∧ (x̄2 ∨ x̄3) ∧ (x̄2 ∨ x̄4) ∧ (x̄3 ∨ x̄4)

The z3 input will look like

(declare-const x1 Bool)

(declare-const x2 Bool)

(declare-const x3 Bool)

(declare-const x4 Bool)

(assert (or x1 x2 x3))

(assert (or x1 x2 x4))

(assert (or x1 x3 x4))

(assert (or x2 x3 x4))

(assert (or (not x1)(not x2)))

(assert (or (not x1)(not x4)))

(assert (or (not x2)(not x3)))

(assert (or (not x2)(not x4)))

(assert (or (not x3)(not x4)))

(check-sat)

(get-model)
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We run z3

z3 independent.txt

sat

(model

(define-fun x3 () Bool

true)

(define-fun x2 () Bool

false)

(define-fun x1 () Bool

true)

(define-fun x4 () Bool

false)

)

So x1 and x3 are selected as an independent set of size 2.
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Another IS example

Running the same algorithm on figure below produces a solution of
{x1, x3, x7, x9}. The Python code can be found at
https://github.com/hikmatfarhat-ndu/Python-exercises

How would you find another solution? Add a condition that not all
the above are true at the same time. This would give another solution
{x2, x4, x5, x8}.

x1

x2x5x8

x3x6 x4x7

x9
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k-Coloring to SAT

Given a graph G = 〈V ,E 〉 and k-colors

is it possible to assign a color to every vertex such that no two
neighbors have the same color?

This is called the k-coloring problem

Later we will show that 3-coloring (and thus k-coloring) is
NP-complete by reducing 3SAT to 3-Coloring.

Now we need to do the opposite: reduce k-coloring to SAT to be able
to solve k-coloring instances.
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Exactly one is true

A common occurrence is when we have k variables and we want
exactly one of them to be true.

From our previous discussion this is equivalent to

(x1 ∨ x2 ∨ . . . ∨ xk)
∧
i 6=j

(x̄i ∨ x̄j)
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Let xij , 1 ≤ i ≤ n, 1 ≤ j ≤ k be a boolean variable such that xij = 1
iff node i has color j .

Since a node can be assigned exactly one color then: at least one is
true and at most one is true

Thus for every node i we have a clause:

(xi1 ∨ xi2 ∨ . . . ∨ xik)
∧
l 6=m

(x̄il ∨ x̄im)

Also for every two neighbors i , j cannot have the same color so

(x̄i1 ∨ x̄j1) ∧ . . . ∧ (x̄ik ∨ x̄ik)
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Encoding

Given n nodes and k-colors we encode the variables as follows

the first node we associate nodes 1, . . . , k for the k colors.

The second node xk+1, . . . , x2k

In general for node i we associate the indices
k · i − k + 1, k · i − k + 2, . . . , k · i − 1

In Python, let colors be an array of colors then the function below
returns the variable number for node i color j

d e f varnum ( i , j ) :
r e t u r n l e n ( c o l o r s )∗ i−j +1
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Example

Consider again the graph we used to test for independent set and
check if it admits 3-coloring. Using z3 we get the solution in the
figure below.

x0

x1

x2x3

x4x8x7

x6 x5
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Mini sudoku

Before we use a SAT solver to solve sudoku we try semi-manually to
solve a mini version of sudoku

The mini sudoku is just a 2x2 grid.

As an example consider the grid below

1

2

clearly the answer is setting the top white cell to 2 and the bottom to
1

We will see how we encode it as a SAT problem
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mini sudoku encoding

The rules are
1 All cells in the same row cannot have the same value
2 All cells in the same column cannot have the same value
3 Each cell can contain only one value

To implement the above we introduce variables xijk = 1 if cell (i , j)
contains the value k.

For example in the grid above we have x111 = 1 and x212 = 1.

Hikmat Farhat Analysis of Algorithms April 7, 2020 55 / 68



All cells in row 1 cannot have the same value translates into

(x111 ∨ x121) ∧ (x̄111 ∨ x̄121)

∧(x112 ∨ x122) ∧ (x̄112 ∨ x̄122)

All cells in row 2 cannot have the same value translates into

(x211 ∨ x221) ∧ (x̄211 ∨ x̄221)

∧(x212 ∨ x222) ∧ (x̄212 ∨ x̄222)

All cells in column 1 cannot have the same value translates into

(x111 ∨ x211) ∧ (x̄111 ∨ x̄211)

∧(x112 ∨ x212) ∧ (x̄112 ∨ x̄212)

All cells in column 2 cannot have the same value translates into

(x121 ∨ x221) ∧ (x̄121 ∨ x̄221)

∧(x122 ∨ x222) ∧ (x̄122 ∨ x̄22)
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Finally, each cell cannot have both values

(x111 ∨ x112) ∧ (x̄111 ∨ x̄112)

(x121 ∨ x122) ∧ (x̄121 ∨ x̄122)

(x211 ∨ x212) ∧ (x̄211 ∨ x̄212)

(x221 ∨ x222) ∧ (x̄221 ∨ x̄222)

Also x111 = 1 and x212 = 1.

We enter these clauses as input to minisat by renaming the 8
variables as : x111 = 1, x121 = 2, x112 = 3, x122 = 4
x211 = 5, x221 = 6, x212 = 7, x222 = 8.

The encoding is in the file mini-sudoku.txt on blackboard.
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Solving Sudoku

Unlike the mini sudoku it is almost impossible to write the needed
clauses by hand

We will write a Python code to generate the needed clauses

A central computation that we will need often is when exactly one
variable is true

Also we need an automatic encoding of the variables xijk .

We define a function that returns the variable number given (i , j , k)
as 100 ∗ i + 10 ∗ j + k .

In Python

d e f varnum ( i , j , k ) :
r e t u r n 100∗ i +10∗ j+k
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We define a function that takes an input a list of literals and adds the
clauses that guarantees that only one of them is true.

Note that below we use the itertools.combinations which returns all
combinations of 2 variables from a list of literals.

d e f e x a c t l y o n e o f ( l i t e r a l s ) :
# at l e a s t one i s t r u e
s o l v e r . add ( z3 . Or ( [ l f o r l i n l i t e r a l s ] ) )

# no two can be t r u e
f o r u , v i n i t e r t o o l s . c o m b i n a t i o n s ( l i t e r a l s , 2 ) :

s o l v e r . add ( z3 . Or ( z3 . Not ( u ) , z3 . Not ( v ) ) )
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Using the above we can add the constraints
1 For each cell (i , j) exactly one value is true
2 For each row value k appears exactly once
3 For each column value k appears exactly once
4 For each 3x3 block value k appears exactly once
5 Finally, we add the clauses that make the filled cells to be true
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Dealing with 3x3 blocks

Note the ”origin” of each 3x3 block below.

From the ”origin” x the block is defined as (x + δi , x + δj) where
δi = 0, 1, 2 and δj = 0, 1, 2.

1 2 3 4 5 6 7 8 9

9

8

7

6

5

4

3

2

1 x11 x14 x17

x41 x44 x47

x71 x74 x77
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The Python code for the sudoku is on black board

Hikmat Farhat Analysis of Algorithms April 7, 2020 62 / 68



SAT Modulo Theories

A extension of SAT that allows us to reason about other than
boolean variables

SMT can be regarded as a constraint satisfaction problem

For example if x , y , z are real numbers or integers

are the following constraints satisfiable?

x + y + z = 10

2 ≤ x ≤ 7

y − z = 2 etc.
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Example: Job Scheduling

We will solve an instance of job scheduling using the z3 smt solver

z3 can be used stand alone with input a file in smt-lib format

It also has a binding for other languages C++, C#, Python
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Example: Job Scheduling

Suppose that we have 6 jobs of length (arbitrary units)

L = [4, 5, 6, 7, 8, 9]

Further suppose that you have three workers (A,B and C) referred to
as 1,2 and 3 to complete the jobs

Let s[i ], e[i ], p[i ] be the starting time, ending time and the worker
that performed job i

We have the following constraints

e[i ]− s[i ] = L[i ].

Suppose that job 3 cannot start until jobs 2 and 6 finish

No worker can perform more than one job at a time

Jobs 1 and 4 require the special skills of worker 2
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Example: using z3

Z3 uses the smt-lib syntax which is very similar to Lisp

First we declare all the needed variables s, e, p

(declare-const s1 Int)

...

(declare-const s6 Int)

(declare-const e1 Int)

...

(declare-const p6 Int)
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Make sure the length of job 1 is 4 and job 2 is 5 etc..

(assert (= e1 (+ s1 4)))

(assert (= e2 (+ s2 5)))

...

If jobs 1 and 2 are performed by the same worker make sure that they
are not done concurrently

(assert (=> (= p1 p2) (or (>= s1 e2) (>= s2 e1))))

....

Make sure job 3 cannot start until jobs 2 and 6 finish

(assert (and (>= s3 e2) (>=s3 e6)))
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Solution

C

B

A

6 3

1 4

2 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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