
Analysis of Algorithms
Greedy Strategy

Hikmat Farhat

April 7, 2020

Hikmat Farhat Analysis of Algorithms April 7, 2020 1 / 50

Job Scheduling

Assume we have n jobs, each with weight wi and length li , 1 ≤ i ≤ n.

The jobs share some resource (i.e. CPU) so we run them in a
consecutive manner.

If we run the jobs in the order 1, 2, 3, . . . then job i has completion
time ci =

∑i
k=1 lk .

our goal is to minimize the quantity f =
∑n

k=1 wk · ck
In particular, we would like to have a greedy algorithm that minimizes
f .

To do that we start by looking at special cases

Hikmat Farhat Analysis of Algorithms April 7, 2020 2 / 50

Special case 1

In this special case we assume that all jobs have the same weight then

f = w(l1 + (l1 + l2) + (l1 + l2 + l3) + . . .+ (l1 + · · ·+ ln))

= w(n · l1 + (n − 1) · l2 + (n − 2) · l3 + . . .+ 1 · ln)

Clearly f will be minimized if we choose l1 ≤ l2 ≤ . . . ≤ ln

Hikmat Farhat Analysis of Algorithms April 7, 2020 3 / 50

Special case 2

The second special case is when all jobs have the same length l then

f = l(w1 + 2 · w2 + 3 · w3 + . . . n · wn)

Clearly, f will be minimized if w1 ≥ w2 ≥ w3 ≥ . . . ≥ wn

Hikmat Farhat Analysis of Algorithms April 7, 2020 4 / 50

looking for the general case

It seems that f increases with w and decreases with l .

we need a combination that behaves the same

we can try wi − li and wi/li

Which one should be choose?

We try another special case

Suppose we have only two jobs: w1 = 2, l1 = 1 and w2 = 6,l2 = 4.

if we choose f = w − l then f1 = 1 and f2 = 2 this means that job 2
will start first and we get

6× 4 + 2× 5 = 34.

if we choose f = w/l then f1 = 2 and f2 = 1.5 this means that job 1
will start first and we get

2× 1 + 6× 5 = 32. Therefore the first method does not lead always
to the optimal solution.

Does the second method lead to the optimal solution?

Hikmat Farhat Analysis of Algorithms April 7, 2020 5 / 50

Proof by exchane argument

Let σ be an optimal sequence of jobs which is not greedy.

Since σ is not greedy then it contains consecutive jobs i , k such that
wi/li < wk/lk .

we can write

Xσ =
∑
j 6=i ,k

wj · cj + wi · ci + wk · ck

Let σ1 be the sequence obtained from σ by exchanging the order of i
and k .

It is clear that the completion time of all jobs other than i and k
remains unchanged. Let c be the sum of completion times of all jobs
occurring before i then in the sequence σ we have ci = c + li and
ck = c + li + lk

Hikmat Farhat Analysis of Algorithms April 7, 2020 6 / 50

In the sequence σ1 we have ci = c + li + lk and ck = c + lk .

Then

Xσ − Xσ1 = (wi · c + wi · li + wk · c + wk · li + wk · lk)

− (wi · c + wi · li + wi · lk + wk · c + wk · lk)

= wk · li − wi · lk > 0

⇒ Xσ > Xσ1

The last two lines follow from wi/li < wk/lk ⇒ wi · lk < wk · li .
This is a contradiction because σ was assumed to be optimal.

Hikmat Farhat Analysis of Algorithms April 7, 2020 7 / 50

Interval Scheduling

Consider a set of n intervals (s, e) where s and e are the starting and
ending time respectively.

We would like to choose a non-overlapping subset of those intervals
such that the total number of selected intervals is maximum.

For example, consider the intervals {(1, 5), (2, 7), (5, 8)}. The largest
subset of non-overlapping intervals is {(1, 5), (5, 8)}.

We are looking for a greedy solution to this optimization problem. What
property of the intervals should the greedy method select? There are many
options:

1 shortest interval first

2 The interval with the smallest starting time

3 The interval with the smalles number of overlaps

4 etc...

Hikmat Farhat Analysis of Algorithms April 7, 2020 8 / 50

Shortest iterval first

Figure: Shortest interval counterexample

Hikmat Farhat Analysis of Algorithms April 7, 2020 9 / 50

Earliest starting time first

Figure: counterexample for earliest starting time first

Hikmat Farhat Analysis of Algorithms April 7, 2020 10 / 50

Smallest overlap first

Figure: Smallest overlap first

Hikmat Farhat Analysis of Algorithms April 7, 2020 11 / 50

Greedy Solution

The greedy solution consists of choose the next compatible interval with
the smallest finishing time. We build a min-heap based on finishing times.
Let I be the set of intervals and T the desired solution
Q ← I
T ← ∅
last ← −1
while Q 6= ∅ do

(s, f)← Delete-Min(Q)

if s ≥ last then
T ← T ∪ {(s, f)}
last ← f

end

end

Hikmat Farhat Analysis of Algorithms April 7, 2020 12 / 50

Let I be the set of intervals. A solution to the interval scheduling is a
subset S = {s1, f1), . . . , (sk , fk)} ⊆ I such that for all i < j we have
fi ≤ sj .

Our goal is to find the optimal solution, i.e. the solution with the
largest number of intervals.

We will show that the greedy solution is optimal in the sense that the
number of intervals in the greedy solution is equal to the size of the
optimal solution.

Let G = {s1, f1), . . . , (sk , fk)} be the greedy solution and
O = {(γ1, φ1), . . . , (γm, φm)} be an optimal solution.

First we need the following lemma:

Lemma: ∀i , fi ≤ φi .

Hikmat Farhat Analysis of Algorithms April 7, 2020 13 / 50

Proof of lemma

We prove the lemma by induction.
base case: clearly f1 ≤ φ1 since f1 is the smallest value of all finishing
times as chosen by the greedy algorithm.
hypothesis: assume fi ≤ φi
induction step: Since both G and O are solutions then we have fi ≤ si+1

and φi ≤ γi+1. Using the induction hypothesis fi ≤ φi it follows that
fi ≤ γi+1.
This means that (si , fi) and (γi+1, φi+1) are compatible. Now the greedy
algorithm always chooses the next compatible interval with the smallest
finishing time thus fi+1 ≤ φi+1 which completes the proof.

Hikmat Farhat Analysis of Algorithms April 7, 2020 14 / 50

Greedy solution is optimal

By way of contradiction, assume that the greedy solution
G = {s1, f1), . . . , (sk , fk)} is not optimal then there exists an optimal
solution O = {(γ1, φ1), . . . , (γm, φm)} with k < m. This means that the
greedy algorithms stops after adding (sk , fk) to the solution. In other
words, when the greedy algorithm removes (sk , fk) from the queue there
are no more intervals in the queue that are compatible with (sk , fk).
Using the previous lemma we know that fk ≤ φk and since (γk , φk) is
compatible with (γk+1, φk+1) then (γk+1, φk+1) is compatible with (sk , fk)
which is a contradiction. Thus the greedy solution is optimal.

Hikmat Farhat Analysis of Algorithms April 7, 2020 15 / 50

Fractional Knapsack

Given n items having value v1, . . . , vn and weights w1, . . . ,wn and a
knapsack of size W

We need to maximize

n∑
i=1

xi · vi

Subject to the condition

n∑
i=1

xi · wi ≤W

Where 0 ≤ xi ≤ 1 is a faction of item i that is used.

Hikmat Farhat Analysis of Algorithms April 7, 2020 16 / 50

Greedy Solution

A greedy solution is obtained by adding repeatedly items with biggest
ration v/w until the next item does not ”fit” in knpacksack so we
add a fraction of it.

Hikmat Farhat Analysis of Algorithms April 7, 2020 17 / 50

Proof of correctness

Consider a knapsack of size W and n items with weight wi and value
vi relabeled such that

v1
w1
≥ v2

w2
≥ . . . ≥ vn

wn

Let Ok−1 =< y1, . . . , ym > be an optimal solution where yj = 1 for
0 ≤ j ≤ k − 1 and 0 ≤ yj ≤ 1 for k ≤ j ≤ m.

Construct a new solution Ok as follows.

For i = 1 to k − 1 the fractions for Ok are the same y ′i = yi

Replace yk by 1, i.e. y ′k = 1. This increases the total weight of the
solution by (1− yk)wk .

To compensate we need to subtract this value which we distribute
evenly over the remaining values yk+1, . . . , ym

Therefore for i = k + 1 to m replace yi by y ′i = yi − (1−yk)wk

(m−k−1)wi

You can check that
∑m

i=1 y
′
iwi =

∑m
i=1 yiwi .

Hikmat Farhat Analysis of Algorithms April 7, 2020 18 / 50

The total value for Ok is

k−1∑
i=1

y ′i vi + y ′kvk +
n∑

i=k+1

y ′i vi

Replacing the value of y ′i in each part we get

k−1∑
i=1

yivi + vk +
m∑

i=k+1

yivi −
(1− yk)wk

m − k − 1

m∑
i=k+1

vi
wi

Hikmat Farhat Analysis of Algorithms April 7, 2020 19 / 50

Subtracting the value of Ok−1 from Ok we get

(1− yk)vk −
(1− yk)wk

m − k − 1

m∑
i=k+1

vi
wi

Since vi
wi
≤ vk

wk
for all i > k then

m∑
i=k+1

vi
wi
≤ (m − k − 1)

vk
wk

(1− yk)wk

m − k − 1

m∑
i=k+1

vi
wi
≤ (1− yk)vk

Therefore Ok − Ok−1 ≥ 0 and Ok is optimal.

Hikmat Farhat Analysis of Algorithms April 7, 2020 20 / 50

Recall that Ok−1 is an optimal solution where the first k − 1 fractions
are 1.

The above procedure can be performed to show that Ok+1 . . .On−1 is
optimal and therefore greedy is optimal.

Hikmat Farhat Analysis of Algorithms April 7, 2020 21 / 50

Huffman Coding

Hauffman coding is a greedy recursive algorithm to obtain optimal
prefix code given an alphabet with frequencies of occurrences

Hikmat Farhat Analysis of Algorithms April 7, 2020 22 / 50

First a prefix code is equivalent to a binary tree so once we build the
optimal binary tree then we ”read off” the encoding.

The basic idea of HC is to build the optimal tree recursively in a
greedy manner

1 The optimal tree T for k symbols is obtained by constructing the
optimal tree T ′ for k − 1 symbols where T ′ is the same as T except
replacing the two nodes with the smallest frequencies in T , x and y by
a single node having the sum of the frequencies: fw = fx + fy

T ′ = T − {x , y} ∪ {w}

Hikmat Farhat Analysis of Algorithms April 7, 2020 23 / 50

The optimal tree has the following properties:

It is full. Suppose that y is a single child of node w . By replacing w
by y we obtain a ”better” tree

For any two leaves x , y if fx > fy then dx < dy . This can be shown by
an exchange argument.

Note that there could be many optimal trees. Let x , y be the symbols with
the least frequencies then there exists an optimal tree in which x , y are
siblings.

Hikmat Farhat Analysis of Algorithms April 7, 2020 24 / 50

Huffman coding: Python Code

i m p o r t queue
c l a s s Node (o b j e c t) :

d e f i n i t (s e l f , l e f t =None , r i g h t=None) :
s e l f . l e f t = l e f t
s e l f . r i g h t = r i g h t

d e f c h i l d r e n (s e l f) :
r e t u r n ((s e l f . l e f t , s e l f . r i g h t))

f r e q = [
(2 5 , ’ a ’) , (2 4 , ’ b ’) , (2 8 , ’ c ’) , (1 8 , ’ d ’) , (5 , ’ e ’)]

d e f c r e a t e t r e e (f r e q u e n c i e s) :
p = queue . P r i o r i t y Q u e u e ()
f o r v a l u e i n f r e q u e n c i e s :

p . put (v a l u e)
w h i l e p . q s i z e () > 1 :

l , r = p . g e t () , p . g e t ()
node = Node (l , r)
p . put ((l [0]+ r [0] , node))

r e t u r n p . g e t ()

Hikmat Farhat Analysis of Algorithms April 7, 2020 25 / 50

R e c u r s i v e l y walk the t r e e down to t he l e a v e s ,
a s s i g n i n g a code v a l u e to each symbol

d e f w a l k t r e e (node , p r e f i x =””):

i f i s i n s t a n c e (node [1] , Node) :
l , r=node [1] . c h i l d r e n ()
w a l k t r e e (l , p r e f i x +”1”)
w a l k t r e e (r , p r e f i x +”0”)

e l s e :
code [node [1]] = p r e f i x

node = c r e a t e t r e e (f r e q)
code={}
w a l k t r e e (node)

Hikmat Farhat Analysis of Algorithms April 7, 2020 26 / 50

Properties of optimal coding trees

An optimal coding tree is full. This is true because if a node is a
single child it could replace its parent and reduce the encoding by 1.

Theorem

For all nodes x , y in an optimal coding tree if fx > fy then d(x) ≤ d(y).

Proof.

By way of contradiction suppose for an optimal tree T , ∃x , y such that
fx > fy and d(x) > d(y). Let A(T) be the average number of bits for T
an construct T ′ from T by swapping the places of nodes x and y . Then

A(T)− A(T ′) = fx · d(x) + fy · d(y)− fx · d(y)− fy · d(x)

= (fx − fy)(d(x)− d(y))

since fx > fy and d(x) > d(y) then A(T) > A(T ′) which is a
contradiction since T is optimal

Hikmat Farhat Analysis of Algorithms April 7, 2020 27 / 50

Theorem

Let x and y be the symbols with the smallest frequencies in the alphabet.
There exists an optimal tree in which the nodes corresponding to x and y
are siblings.

Proof.

We know that the node corresponding to the lowest frequency has a
sibling, say w . Since y is the second lowest then fy ≤ fw . By swapping the
nodes of y and w we obtain, according to the previous theorem, a tree
that is at least as good as the original, therefore it is optimal.

Hikmat Farhat Analysis of Algorithms April 7, 2020 28 / 50

Huffman coding: Optimality

To show that Hauffman coding is optimal we need first to find an
expression for the average number of bits as a function of the size of the
tree. Let T be a Hauffman tree for an alphabet S of size k whose two
lowest frequency letters are x and y . Let T ′ be the tree obtained by
replacing x and y in T by w with fw = fx + fy . The average number of
bits used for a given encoding can be written as

Hikmat Farhat Analysis of Algorithms April 7, 2020 29 / 50

A(T) =
∑
u∈S

fu · depthT (u)

=
∑
u 6=x ,y

fu · depthT (u) + fx · depthT (x) + fy · depthT (y)

=
∑
u 6=x ,y

fu · depthT (u) + (fx + fy) · (depthT ′(w) + 1)

=
∑
u 6=x ,y

fu · depthT (u) + (fw) · (depthT ′(w) + 1)

=
∑
u∈S ′

fu · depthT ′(u) + fw

= A(T ′) + fw

Hikmat Farhat Analysis of Algorithms April 7, 2020 30 / 50

We prove by induction on the size of the alphabet that the Huffman
algorithm produces optimal code. Clearly, if the alphabet contains only
two letters then Huffman codes produces the optimal result since each
letter will use only one bit.
Hypothesis: assume that our algorithm produces optimal codes for all
alphabets of size up to k − 1. Consider an alphabet S with size k where x
and y are the letters in S that have the smallest frequencies.
Assume by way of contradiction that the Huffman tree is not optimal.
From a previous theorem we know that there is an optimal tree Z in which
the nodes corresponding to the two lowest frequencies, x and y , are
siblings. Now construct the tree Z ′ by removing x and y from Z and
replacing it with w such that fw = fx + fy . From our previous result we
know that A(Z) = A(Z ′) + fw and A(T) = A(T ′) + fw . Combining both
results we get that A(Z ′) < A(T ′) which is a contradiction since the
hypothesis states that T ′ is optimal.

Hikmat Farhat Analysis of Algorithms April 7, 2020 31 / 50

Minimum Spanning Tree

In many application, when the system is represented by a graph we
need to find a Minimum Spanning Tree (MST).

As the name suggest this collection of nodes is
1 A tree.
2 Spanning. meaning includes all the nodes of the graph.
3 It has the least total cost of all such trees.

Hikmat Farhat Analysis of Algorithms April 7, 2020 32 / 50

MST:Kruskal’s Algorithm

Kruskal’s algorithm computes a MST of a given graph.

Every edge has an associated weight or cost.

The idea is to build the MST by adding an edge every iteration.

The edges are considered by increasing order.

An edge is added if it doesn’t create a cycle.

The algorithm stops when there are no more edges to consider.

Hikmat Farhat Analysis of Algorithms April 7, 2020 33 / 50

Example

Hikmat Farhat Analysis of Algorithms April 7, 2020 34 / 50

Example

Hikmat Farhat Analysis of Algorithms April 7, 2020 35 / 50

MST-KRUSKAL(G)

A← ∅
foreach v ∈ V do

MAKE-SET(v)

end
F ← SORT-EDGES(E)

foreach (u, v) ∈ F do
if FIND-SET(u) 6= FIND-SET(v) then

A← A ∪ {(u, v)}
UNION(u, v)

end

end

Hikmat Farhat Analysis of Algorithms April 7, 2020 36 / 50

Correctness of Kruskal’s algorithm

Let T = {e1, . . . , en−1} be the tree obtained using Kruskal’s algoritm,
in that order.

Let To be an mst that shares e1, . . . , ek−1 with T but not
ek , . . . , en−1.

Construct the graph G = To ∪ {ek} which clearly has a cycle C
passing by ek .

C contains an edge e /∈ {e1, . . . , ek} because Kruskal’s algorithm does
not create a cycle

Furthermore we ≥ wek because otherwise the algorithm would have
chosen e instead of ek .

Now construct the tree To2 = To −{e} ∪ {ek} which is clearly an mst
that shares k edges with T

repeating the above procedure we obtain that T is an mst.

Hikmat Farhat Analysis of Algorithms April 7, 2020 37 / 50

Single Source Shortest Path

Given a graph G = (V ,E) with a real-valued weight function w we
often as the question:

What is the minimal cost (shortest) path from s ∈ V to all other
vertices of the graph.

First we need some definitions and theorems.

Hikmat Farhat Analysis of Algorithms April 7, 2020 38 / 50

Given a graph G = (V ,E) and a real-valued weight function
w : E → R.

weight of path p = (v0, . . . , vk) sometimes written as

w(p) =
k∑

i=1

w(vi−1, vi)

The shortest path cost δ

δ(u, v) =

{
min{w(p) : u

p
 v} if there is a path from u to v

∞ otherwise

}

Hikmat Farhat Analysis of Algorithms April 7, 2020 39 / 50

Properties of Shortest Path

Subpaths of shortest path are subpath: Given a graph G = (V ,E)
and weight function w : E → R let p = (v1, . . . vk) be a shortest path
from v1 to vk then for any 1 ≤ i , j ≤ k , pij = (vi , . . . , vj) is a shortest
path from vi to vj .

Proof: we write v1
p
 vk which can be decomposed into

v1
pi vi

pij
 vj

pj
 vk

Then w(p) = w(pi) + w(pij) + w(pj) so if pij is not the shortest path
then ∃p′ij with w(p′ij) < w(pij) then we can write

w(p′) = w(pi) + w(p′ij) + w(pj) < w(p) a contradiction since p is the
shortest path from v1 to vk .

Hikmat Farhat Analysis of Algorithms April 7, 2020 40 / 50

Negative weight

Even if a path contains edges with negative weight a shortest path
can still be defined.

It is undefined if the path contains a negative weight cycle.

This is because we can ”cross” the cycle as many times as we want,
every time lower the cost.

Therefore in the case when there is a negative cycle on a path from u
to v then we set δ(u, v) = −∞ where δ(a, b) is the shortest path cost
from a to b.

Hikmat Farhat Analysis of Algorithms April 7, 2020 41 / 50

Representation of Shortest Paths

In all the algorithms that we will deal with, we maintain for every
vertex v its predecessor v .p (which could be NULL)

At termination v .p will be the predecessor of v on a shortest path
from source s to v .

We also maintain a value v .d which at termination will be the value
of the shortest path cost from source s to v .

During the execution of the algorithm v .d will be an upper bound
on the value of the shortest path cost.

Hikmat Farhat Analysis of Algorithms April 7, 2020 42 / 50

Relaxation

Relaxing an edge (u, v) means testing if we can improve the shortest
path cost of v by using the edge (u, v).

If we can then we update v .d and v .p.

24-4 Lecture Notes for Chapter 24: Single-Source Shortest Paths

RELAX(u, v,w)

if d[v] > d[u]+ w(u, v)
then d[v]← d[u]+ w(u, v)

π [v]← u

3 3

RELAX

u v
4 10

4 7

RELAX

4 6

4 6

For all the single-source shortest-paths algorithms weíll look at,

• start by calling INIT-SINGLE-SOURCE,

• then relax edges.

The algorithms differ in the order and how many times they relax each edge.

Shortest-paths properties

Based on calling INIT-SINGLE-SOURCE once and then calling RELAX zero or

more times.

Triangle inequality

For all (u, v) ∈ E , we have δ(s, v) ≤ δ(s, u) + w(u, v).

Proof Weight of shortest path s ! v is ≤ weight of any path s ! v. Path
s ! u → v is a path s ! v, and if we use a shortest path s ! u, its weight is
δ(s, u) + w(u, v).

Upper-bound property

Always have d[v] ≥ δ(s, v) for all v. Once d[v] = δ(s, v), it never changes.

Proof Initially true.
Suppose there exists a vertex such that d[v] < δ(s, v).

Without loss of generality, v is first vertex for which this happens.
Let u be the vertex that causes d[v] to change.
Then d[v] = d[u]+ w(u, v).

So,

d[v] < δ(s, v)

≤ δ(s, u) + w(u, v) (triangle inequality)

≤ d[u]+ w(u, v) (v is first violation)
⇒ d[v] < d[u]+ w(u, v) .

In the figure to the left the cost of v was changed to the new cost (7)
whereas to the right it was not changed since the new cost (7) is
bigger than the current (6).

What is NOT shown is the change to v .p in the first case.

Hikmat Farhat Analysis of Algorithms April 7, 2020 43 / 50

Initialization and Relaxation

Initially all vertices (except the source) have cost ∞ and no
predecessors (including the source).

INITIALIZE(G,s)

foreach v ∈ V do
v .d ←∞
v .p ← NULL

end
s.d ← 0

RELAX(u,v)

if v .d > u.d + w(u, v) then
v .d ← u.d + w(u, v)
v .p ← u

end

Hikmat Farhat Analysis of Algorithms April 7, 2020 44 / 50

Dijkstra’s Algorithm

Dijkstra’s algorithm is another single source shortest path.

It works when all weights are positive.

We will see that it is faster than the Bellman-Ford algorithm.

It maintains a set S of nodes whose shortest paths have been
determined

All other nodes are kept in a min-priority queue to keep track of the
next node to process.

Hikmat Farhat Analysis of Algorithms April 7, 2020 45 / 50

Dijkstra Pseudo Code

DIJKSTRA(G,s);
INITIALIZE(G,s)

S ← ∅
Q ← V
while Q 6= ∅ do

u ← EXTRACT-MIN(Q)

S ← S ∪ {u}
foreach v ∈ Adj [u] do

RELAX(u,v)

end

end

Hikmat Farhat Analysis of Algorithms April 7, 2020 46 / 50

Example

Hikmat Farhat Analysis of Algorithms April 7, 2020 47 / 50

Complexity

The running time of Dijkstra’s algorithm depends on the
implementation of the queue.

Using a min-heap on a sparse graph gives complexity of
O((V + E) logV).

This is because the while loop executes V times. The extract-min is
O(logV) for a cost of V logV . The relax includes an key update
which means logV . Since each edge is relaxed at most once then the
total is E with a cost of E logV .

Hikmat Farhat Analysis of Algorithms April 7, 2020 48 / 50

Correctness

We show that for every iteration Dijkstra’s algorithm adds node u then
u.d is the shortest path distance from the source to u. Note that the
algorithm adds a node to S and removes it from Q. Base case: initially it
adds the source and s.d = 0 which is correct. Assume that all added
nodes are such that u.d is shortest path. Induction step: the next step the
algorithm adds a node v such that v .d is minimum among all nodes in the
set Q (see figure below).

Hikmat Farhat Analysis of Algorithms April 7, 2020 49 / 50

Suppose that the path s u → v is not the shortest path. Then there
exists a shorter path s x → y v . But y .d = x .d + c(x , y) > v .d ,
otherwise the algorithm would have selected y . Since the algorithm is used
with positive costs only then the cost of the path s x → y v is
greater than s u → v

Hikmat Farhat Analysis of Algorithms April 7, 2020 50 / 50

	Job scheduling
	Scheduling
	Fractional Knapsack
	Proof of correctness

	Huffman Coding

