Analysis of Algorithms Network Flows

Hikmat Farhat

May 4, 2020

 299

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4

- Imagine having factory that produces materials
- You would like to transport your products to a given destination
- Suppose that there are multiple roads from factory to destination
- Some are congested and some are less some
- What is the maximum number of products you could transport from destination to source?

つくい

Flow Networks

- A flow network $G = \langle V, E \rangle$ is a directed graph.
- Each edge $(u, v) \in E$ has a capacity $c(u, v) \ge 0$.
- If $(u, v) \notin E$ then we set $c(u, v) = 0$.
- There are two special vertices: source $s \in V$ and sink $t \in V$.
- We assume that the graph is connected and has no anti parallel edges. If $(u, v) \in E$ implies $(v, u) \notin E$.
- A flow is a function $f: V \times V \rightarrow \mathbb{R}$ with the following constraints:
	- **1** for all $u, v \in V$ we have $f(u, v) \leq c(u, v)$
	- 2 for all $u, v \in V$ we have $f(u, v) = -f(v, u)$
	- **3** for all $u \in V \{s, t\}$ we have

$$
\sum_{v\in V}f(u,v)=0
$$

Example (All examples are taken from the CLRS book)

• Notation: flow/capacity. if flow = 0, e.g $v_2 \rightarrow v_1$. then just capacity

Figure: 1

 \leftarrow

Residual Networks

- Given a graph $G = < V, E >$, a flow f in G and a capacity function c.
- Define the residual capacity of an edge (u, v) as

$$
c_R(u,v)=c(u,v)-f(u,v)
$$

- Intuitivally, the residual capacity of an edge is how much more flow can pass through it.
- Note that every $(u, v) \notin E$ also has a residual capacity.
- Since the capacity of such pairs is by definition zero then their residual capacity is

$$
\forall (u,v) \notin E \quad c_R(u,v) = -f(u,v) = f(v,u)
$$

Example residual network

∍

Ford-Fulkerson Method

- Ford-Fulkerson is a general **method** to find a maximum flow in a a network.
- **Iteratively find an augemting path in the residual network.**
- **•** update the residual network until there is no more augemting paths.
- the resulting flow is maximum.
- **Does not** specify how to find an augmenting path.
- For now we will find an augmenting path "visually".

FORD-FULKERSON(G, s, t)

\nforecast
$$
(u, v) \in V \times V
$$
 do

\n $|c_r(u, v) \leftarrow c(u, v)$

\nwhile $\exists a$ path p from s to t in G_f do

\n $|c_r(p) \leftarrow \min\{c_r(u, v) : (u, v) \in p\}$

\nforecast $(u, v) \in p$ do

\n $|c_r(u, v) \leftarrow c_r(u, v) - c_r(p)$

\n $|c_r(v, u) \leftarrow c_r(v, u) + c_r(p)$

\nforecast $(u, v) \in E$ do

\n $|f(u, v) \leftarrow c(u, v) - c_r(u, v)$

Kロト K部ト K目と K目と 「目」 のQ (^

• Initially there is no flow. Only edges with $c_r > 0$ are shown

(b) update 1

 \leftarrow \Box \rightarrow

(d) update 2

目

メロトメ 御 トメ 君 トメ 君 ト

(f) update 3

目

メロトメ 御 トメ 君 トメ 君 ト

Hikmat Farhat **[Analysis of Algorithms](#page-0-0)** May 4, 2020 12/23

目

メロトメ 御 トメ 君 トメ 君 ト

Hikmat Farhat **[Analysis of Algorithms](#page-0-0)** May 4, 2020 13/23

目

メロトメ 御 トメ 君 トメ 君 ト

Compute the flow

• for each $(u, v) \in E$ we have $f(u, v) = c_r(v, u)$. Only edges with $c_r > 0$ are shown

Edmonds-Karp Algorithm

- Uses breadth-first-search (BFS) to find an augmenting path.
- We assign a unit weight for each edge and compute the shortest path from s to t
- \bullet Select the shortest path as the augmenting path p.

EDMONDS-KARP(G,s,t) foreach $(u, v) \in V \times V$ do \vert $c_r(u, v) \leftarrow c(u, v)$ while \exists a shortest path p from s to t in G_f do $c_r(p) \leftarrow \min\{c_r(u, v) : (u, v) \in p\}$ foreach $(u, v) \in p$ do $c_r(u, v) \leftarrow c_r(u, v) - c_r(p)$ $c_r(v, u) \leftarrow c_r(v, u) + c_r(p)$ foreach $(u, v) \in E$ do $\int f(u, v) \leftarrow c(u, v) - c_r(u, v)$

 Ω

Sample example but using shortest path

• Initially there is no flow. Only edges with $c_r > 0$ are shown

Sample example but using shortest path

• Initially there is no flow. Only edges with $c_r > 0$ are shown

 \leftarrow

Sample example but using shortest path

• Initially there is no flow. Only edges with $c_r > 0$ are shown

Bipartite matching

- Given a graph $G = < V, E >$ a matching is a set of edges $M \subseteq E$ such that for all $v \in V$ at **most** one edge in M is incident on v.
- $v \in V$ is **matched** if $\exists (u, v) \in M$ for some $u \in V$.
- \bullet M is said to be a maximum matching if for all matching M' we have $|M'| \leq |M|$
- A graph $G = < V, E >$ is said to be bipartite if it can be partitioned $V = L \cup R$ where $L \cap R = \emptyset$ and for all $(u, v) \in E$, $u \in L$ and $v \in R$.

 Ω

Example: Matching in bipartite graphs

Þ

Constructing an equivalent flow network

- Given a bipartite graph $G = \langle V, E \rangle$ we construct a new (flow) graph $\,G' = < V', E' > \,$ as follows:
- $V' = V \cup s, t$. With $s \in L$ and $t \in R$.
- $E' = E \cup \{(s, u) \mid u \in L\} \cup \{(u, t) \mid u \in R\}$
- Also every edge $(u, v) \in E$ is made a direct edge from L to R.
- Finally the capacity of every edge in E' is set to 1.

 Ω

• From the maximum matching in the previous example we construct the flow network shown below where the maximum matching corresponds to the maximum flow.

• two windows and one linux machine

 \equiv

 299

イロト イ母ト イヨト イヨト

Edge disjoing paths

- Given a graph $G = < V, E >$ and set of paths is said to be edge disjoint if each $(u, v) \in E$ appears in at most one path.
- The problem to be solved is as follows
	- **1** Given a directed graph $G = \langle V, E \rangle$ and two nodes s and t
	- \bullet Find the maximum number of edge disjoint paths from s to t