Analysis of Algorithms Network Flows

Hikmat Farhat

May 4, 2020

Hikmat Farhat

Analysis of Algorithms

 May 4, 2020
 1/23

(日)

- Imagine having factory that produces materials
- You would like to transport your products to a given destination
- Suppose that there are multiple roads from factory to destination
- Some are congested and some are less some
- What is the maximum number of products you could transport from destination to source?

Flow Networks

- A flow network $G = \langle V, E \rangle$ is a directed graph.
- Each edge $(u, v) \in E$ has a **capacity** $c(u, v) \ge 0$.
- If $(u, v) \notin E$ then we set c(u, v) = 0.
- There are two special vertices: source $s \in V$ and sink $t \in V$.
- We assume that the graph is connected and has no anti parallel edges. If (u, v) ∈ E implies (v, u) ∉ E.
- A flow is a function $f: V \times V \rightarrow \mathbf{R}$ with the following constraints:
 - for all $u, v \in V$ we have $f(u, v) \leq c(u, v)$
 - 2 for all $u, v \in V$ we have f(u, v) = -f(v, u)
 - **3** for all $u \in V \{s, t\}$ we have

$$\sum_{v\in V}f(u,v)=0$$

< ロ > < 同 > < 三 > < 三 >

Example (All examples are taken from the CLRS book)

• Notation: *flow*/*capacity*. if *flow* = 0, e.g $v_2 \rightarrow v_1$. then just *capacity*

Figure: 1

Hikmat Farha	
	22

Residual Networks

- Given a graph $G = \langle V, E \rangle$, a flow f in G and a capacity function c.
- Define the residual capacity of an edge (u, v) as

$$c_R(u,v) = c(u,v) - f(u,v)$$

- Intuitivally, the residual capacity of an edge is how much more flow can pass through it.
- Note that every $(u, v) \notin E$ also has a residual capacity.
- Since the capacity of such pairs is by definition zero then their residual capacity is

$$\forall (u,v) \notin E \quad c_R(u,v) = -f(u,v) = f(v,u)$$

Example residual network

Hikmat Farhat

Analysis of Algorithms

· ▲ 볼 ▶ 볼 ∽ ९. May 4, 2020 6 / 23

Ford-Fulkerson Method

- Ford-Fulkerson is a general method to find a maximum flow in a a network.
- Iteratively find an **augemting path** in the residual network.
- update the residual network until there is no more augemting paths.
- the resulting flow is maximum.
- **Does not** specify how to find an augmenting path.
- For now we will find an augmenting path "visually".

FORD-FULKERSON(G, s, t)
foreach
$$(u, v) \in V \times V$$
 do
 $| c_r(u, v) \leftarrow c(u, v)$
while \exists a path p from s to t in G_f do
 $| c_r(p) \leftarrow \min\{c_r(u, v) : (u, v) \in p\}$
foreach $(u, v) \in p$ do
 $| c_r(u, v) \leftarrow c_r(u, v) - c_r(p)$
 $c_r(v, u) \leftarrow c_r(v, u) + c_r(p)$
foreach $(u, v) \in E$ do
 $| f(u, v) \leftarrow c(u, v) - c_r(u, v)$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ─目

• Initially there is no flow. Only edges with $c_r > 0$ are shown

(b) update 1

(d) update 2

1 H	mat	Earl	hat
	NIIIa L	T al l	nat

Analysis of Algorithms

< □ > < □ > < □ > < □ > < □ >

8 (v_1) (v_2) (v_3) (v_3)

(f) update 3

_		_	
	CIMP OF	1.00	10.01

< □ > < □ > < □ > < □ > < □ >

<ロ> <部> <部> <き> <き>

 Image: Nage 4, 2020
 Image: Image 4, 2020
 Image: Image 4, 2020

<ロ> <部> <部> <き> <き>

Compute the flow

• for each $(u, v) \in E$ we have $f(u, v) = c_r(v, u)$. Only edges with $c_r > 0$ are shown

Edmonds-Karp Algorithm

- Uses breadth-first-search (BFS) to find an augmenting path.
- We assign a unit weight for each edge and compute the shortest path from *s* to *t*
- Select the shortest path as the augmenting path *p*.

EDMONDS-KARP(G,s,t) foreach $(u, v) \in V \times V$ do $| c_r(u, v) \leftarrow c(u, v)$ while \exists a shortest path p from s to t in G_f do $| c_r(p) \leftarrow \min\{c_r(u, v) : (u, v) \in p\}$ foreach $(u, v) \in p$ do $| c_r(u, v) \leftarrow c_r(u, v) - c_r(p)$ $| c_r(v, u) \leftarrow c_r(v, u) + c_r(p)$ foreach $(u, v) \in E$ do $| f(u, v) \leftarrow c(u, v) - c_r(u, v)$

- 4 同 1 4 三 1 4 三 1

Sample example but using shortest path

• Initially there is no flow. Only edges with $c_r > 0$ are shown

Sample example but using shortest path

• Initially there is no flow. Only edges with $c_r > 0$ are shown

Hikmat Farhat

Sample example but using shortest path

• Initially there is no flow. Only edges with $c_r > 0$ are shown

Bipartite matching

- Given a graph G =< V, E > a matching is a set of edges M ⊆ E such that for all v ∈ V at most one edge in M is incident on v.
- $v \in V$ is matched if $\exists (u, v) \in M$ for some $u \in V$.
- *M* is said to be a maximum matching if for all matching *M'* we have $|M'| \leq |M|$
- A graph G =< V, E > is said to be bipartite if it can be partitioned
 V = L ∪ R where L ∩ R = Ø and for all (u, v) ∈ E, u ∈ L and v ∈ R.

Example: Matching in bipartite graphs

Constructing an equivalent flow network

- Given a bipartite graph G =< V, E > we construct a new (flow) graph G' =< V', E' > as follows:
- $V' = V \cup s, t$. With $s \in L$ and $t \in R$.
- $E' = E \cup \{(s, u) \mid u \in L\} \cup \{(u, t) \mid u \in R\}$
- Also every edge $(u, v) \in E$ is made a direct edge from L to R.
- Finally the capacity of every edge in E' is set to 1.

• From the maximum matching in the previous example we construct the flow network shown below where the maximum matching corresponds to the maximum flow.

• two windows and one linux machine

<ロト < 同ト < ヨト < ヨト

Edge disjoing paths

- Given a graph G =< V, E > and set of paths is said to be edge disjoint if each (u, v) ∈ E appears in at most one path.
- The problem to be solved is as follows
 - **(**) Given a directed graph $G = \langle V, E \rangle$ and two nodes *s* and *t*
 - 2 Find the maximum number of edge disjoint paths from s to t