
Algorithm Design
Dynamic Programming

Hikmat Farhat

Hikmat Farhat Algorithm Design

Independent Set (Linear)

I Given a graph G = (V ,E) an independent set is a subset of
vertices S ⊆ V such that for all x , y ∈ S , (x , y) /∈ E .

I Usually we need to an independent set such that |S | is
maximum. This general problem is hard to solve in the
general case(see NP chapter later)

I In this lecture we consider a special case of the independent
set: when all vertices are on the same line.

I The solution for this particular case is trivial: select every
other node.

I We make things interesting by adding a weight to each node
and asking : what is the independent set which has the largest
total weight?

Hikmat Farhat Algorithm Design

Example

I An example of the (linear) independent set problem with
weights is shown below. Clearly the solution in this case is
{x2, x4}.

2

x1

8

x2

3

x3

7

x4

4

x5

Hikmat Farhat Algorithm Design

Dynamic Programming Solution

I Given a set of nodes {x1, . . . , xn} with associated weights
{w1, . . . ,wn} we need to find the independent set S such that∑

x∈S is maximum

I Assume that the solution O and the optimal value (which we
don’t know how to compute yet) is opt(n). The dependence
on n comes from the fact that we will express this value in
terms of smaller subproblems.

I Consider the last node xn. Either xn contributed to opt(n)
(i.e. xn ∈ O) or not.

I In the first case xn ∈ O implies that xn−1 /∈ O. If we can
compute the optimal value for {x1, . . . , xn−2} then we add to
it wn to obtain the optimal value

I In the second case xn /∈ O then the optimal value is the same
as the one obtained for {x1, . . . , xn−1}

Hikmat Farhat Algorithm Design

Dynamic Programming Solution

I From the analysis above we conclude that

opt(n) = max

{
wn + opt(n − 2)

opt(n − 1)

I Applying the above recursive formula to the previous example
while noting that opt[0] = 0, opt[1] = 2 (only x1 is included)
we get

opt[5] = max

{
4 + opt[3]

opt[4]

Hikmat Farhat Algorithm Design

opt[4] = max

{
7 + opt[2]

opt[3]

opt[3] = max

{
3 + opt[1]

opt[2]

opt[2] = max

{
8 + opt[0]

opt[1]

I Since opt[0] = 0 and opt[1] = 2 then opt[2] = 8,
opt[3] = 8,opt[4] = 15,opt[5] = 15

Hikmat Farhat Algorithm Design

Finding the solution

I Our method allowed us to compute the optimal value. What
if we want the list of vertices for the optimal solution?

I In all dynamic programming problems the way to find the
optimal solution from the optimal value is almost the
same:walk backwards.

I In the example above: we start with x5 is it in the solution?

I Since opt[5] = 15 and opt[4] = 15 then x5 was not selected
in the solution

I Since opt[4] = 15 and opt[3] = 8 then x4 was selected in the
solution, which means x3 cannot be in the solution

I Since opt[2] = 18 and opt[1] = 2 then x2 was selected in the
solution which means x1 cannot be in the solution

I from the above the optimal solution includes {x2, x4}.

Hikmat Farhat Algorithm Design

Bottom up solution

I A quick look at the recursive solution we can see that the
values of opt[2] and opt[3] were needed twice (for the
computation of opt[3], opt[4], opt[5]).

I If the size of the problem was bigger then these values
(among others) would have been needed even more.

I In fact this top down approach will lead to exponential
complexity because many of the values have to be repeatedly
computed.

I To avoid this exponential blowup we either have to use
memoization (saving the computed values for later use) or
solve the problem in a bottom up manner by using iteration.

Hikmat Farhat Algorithm Design

Iterative Solution

I The iterative solution for the independent set (linear) problem
can be written as

IS(G)

opt[0] = 0
opt[1] = w1

for 2 = 1 to n do
opt[i] = max(opt[i − 1],w [i] + opt[i − 2])

return opt[n]

Hikmat Farhat Algorithm Design

Weighted Interval Scheduling

I The weighted interval scheduling is a generalization of the
interval scheduling we studied using greedy approach.

I In the greedy approach the intervals were considered to be
equivalent.

I In this generalization each interval i has a weight vi in
addition to starting e(i) and ending f (i) time.

I A simple example shows that the greedy approach no longer
works when the intervals have weights

Hikmat Farhat Algorithm Design

Dyanmic Programming Solution

I Let I be a set of intervals where each interval i starts at e(i),
ends at f (i) and has values v(i).

I Our goal is to find a subset of non-overlapping intervals S ⊆ I
such that V =

∑
i∈S v(i) is maximum.

I First we sort the intervals by ending time as we did in the case
of greedy approach.

I Given interval i let p(i) be the largest index k < i such that
intervals k and i do not overlap.

I As an example let I = {(1, 2, 2), (1, 5, 7), (4, 7, 3), (6, 8)}
where (a, b, c) denotes an interval that starts at a, ends at b
and has value c .

I The greedy approach will select the smallest ending time first
so the greedy solution gives

S = {(1, 2, 2), (4, 7, 3)} for a value of 5

Hikmat Farhat Algorithm Design

I Whereas the optimal solution is

S = {(1, 5, 7), (6, 8, 4)} for a value of 11

I The function p in this example has the following values

p(1) = 0

p(2) = 0

p(3) = 1

p(4) = 2

I For the general problem where I = {i1, . . . , in} let opt(n) be
the optimal solution and consider the last interval in.

Hikmat Farhat Algorithm Design

I There are two cases

1. in ∈ opt(n). In this case all the intervals ip(n)+1, . . . , in−1

overlap with in and therefore cannot be in opt(n)
2. in /∈ opt(n). In this case the solution with n intervals is the

same as the solution for n − 1 intervals since we know in /∈ opt
3. Since we don’t know which case we have, we take the larger

one. This means that we compute both possibilities and the
larger of the two values is chosen as the optimal solution

opt(n) = max

{
vn + opt(p(n)) if in ∈ opt(n)

opt(n − 1) if in /∈ opt(n)

I The above is a recursive equation that will allow us to
compute the optimal value.

I If we use the equation as it is it might lead to exponential
blow up.

I Instead we do the computation bottom up

Hikmat Farhat Algorithm Design

OPT(I)

opt[0] = 0
for i = 1 to n do

opt[i] = max(opt[i − 1], v [i] + opt[p[i]])
return opt[n]

I Clearly the complexity of the above algorithm is Θ(n).

I Also we need to sort the intervals by ending time which is
Θ(n log n).

I Once the intervals are sorted computing the p[i]’s can be
done in Θ(log n) for each i (similar to binary search) for a
total of Θ(n log n)

Hikmat Farhat Algorithm Design

Max subarray sum

I Recall: given an array of numbers A0,A1, . . . ,An−1 let

Sij =

j∑
k=i

Ak

I Goal: find maxij Sij
I Brute force (see first lecture): Θ(n3)

I Divide and conquer (see first lecture): Θ(n log n)

I Can we do better? yes.

Hikmat Farhat Algorithm Design

Dyanmic programming solution

I Let Mj = maxi Sij . Mj is the maximum sum ending at j for
all possible values of 0 ≤ i ≤ j .(see next slide for details)

I The max subsequence sum can be written as maxj Mj .

I The key idea is that the values Mj can be stored in an array
and computed in Θ(n) time.

I What is the relationship between the different values of Mj?

I It is clear that if Mj−1 > 0 then Mj = Mj−1 + A[j].

I Otherwise Mj−1 ≤ 0 then Mj = A[j]

I The above two cases can be combined to obtain

Mj = max(A[j],Mj−1 + A[j])

Hikmat Farhat Algorithm Design

M = max
j

max
i

j∑
k=i

A[k] = max
j

(
max

i

j∑
k=i

A[k]

)
= max

j
Mj

I Now

Mj = max
i

j∑
k=i

A[k] = max(

j∑
k=1

A[k],

j∑
k=2

A[k], . . . ,A[j])

= max(

j−1∑
k=1

A[k] + A[j],

j−1∑
k=2

A[k] + A[j], . . . ,A[j])

Hikmat Farhat Algorithm Design

= max

(
j−1∑
i=1

A[k],

j−1∑
i=2

A[k], . . . , 0

)
+ A[j]

= max(Mj−1 + A[j],A[j])

Hikmat Farhat Algorithm Design

Example

I Consider the array

[2,−4, 6, 3,−7, 4, 5,−5,−6, 4, 6,−4, 3]

I One can guess by inspection that the subarray [6, 3,−7, 4, 5]
will give the largest sum.

I using the proposed algorithm we get

[2,−2, 6, 9, 2, 6, 11, 6, 0, 4, 10, 6, 9]

I By scanning the result we obtain the maximum 11 as it should
be.

I Note that this method not only computes the result for
n = 13 elements but also solves all subproblems

Hikmat Farhat Algorithm Design

Code

MaxSubarraySum(A)

M[0]← 0
max ← 0
for i = 1 to n do

M[i]← max(A[i],A[i] + M[i − 1])
/* Now compute the maximum of all sums */

for i = 1 to n do
if M[i] > max then

max ← M[i]

return max

Hikmat Farhat Algorithm Design

Maximum Common Subsequence

I Consider two strings X and Y . Our goal is to find the longest
sequence that is contained in both X and Y .

I For example: BDBDC and ADBC then the longest common
sequence is DBC

I Note that the characters in the sequence do not have to be
necessarily consecutive

I This problem is different from the common substring
problem where the characters in the common sequence are
required to be consecutive.

I In this example the longest common substring is DB

Hikmat Farhat Algorithm Design

Dynamic Programming Solution

I Consider two strings X = x1x2 . . . xn−1xn and
Y = y1y2 . . . ym−1ym. We denote the prefix of length k of X
by Xk = x1 . . . xk so that X = Xn and Y = Ym.

I let LCS(X ,Y) be the length of the longest common
subsequence between X and Y then we can write
LCS(X ,Y) = LCS(Xn,Ym).

I If xn = ym then the common subsequence must include xn. In
this case LCS(Xn,Ym) = LCS(Xn−1,Ym−1) + 1 .

I If xn 6= ym then
LCS(Xn,Ym) = max(LCS(Xn,Ym−1), LCS(Xn−1,Ym))

Hikmat Farhat Algorithm Design

Bottom up algorithm

I First we note that if one substring has 0 elements the length
of the common subsequence is 0. Therefore LCS [i][0] = 0 and
LCS [0][j] = 0 for all i , j

LCS(X ,Y)

for i = 1 to n do
for j = 1 to m do

if X [i] = X [j] then
LCS [i][j]← 1 + LCS [i − 1][j − 1]

else
LCS [i][j]← max(LCS [i − 1][j], LCS [i][j − 1])

return LCS [n][m]

Hikmat Farhat Algorithm Design

Example

Consider the two strings X = ABCD and Y = AABDC

Hikmat Farhat Algorithm Design

Knapsack

I Given a knapsack of capacity W and n items x1, . . . , xn with
weights w1, . . . ,wn and values v1, . . . , vn we need to find a
subset S ⊆ {x1, . . . , xn} such that∑

xi∈S
wi ≤W

∑
xi∈S

vi is maximum

Hikmat Farhat Algorithm Design

Dynamic Programming

I Let Sn be the optimal solution when the problem contains n
items and consider item xn. There are two possibilities:

I Either xn ∈ Sn. Suppose that we know Sn−1 the optimal
solution for the subproblem including the first n − 1 items.
Can one add to that solution xn?No, because when the weight
of xn is added, the total weight might be greater than W .
Instead we look for the optimal solution for the first n − 1
items with a knapsack of capacity W − wn to leave room for
item xn. Therefore Sn(W) = vn + Sn−1(W − wn)

I Or xn /∈ Sn. Since xn /∈ Sn then we don’t need to leave room
for it when we compute Sn−1. In this case Sn(W) = Sn(W)

Hikmat Farhat Algorithm Design

I Because we don’t know apriori if xn ∈ Sn we compute both
values and take the largest.

S(n,W) = max

{
vn + S(n − 1,W − wn)

S(n − 1,W)

I Before writing a bottom up solution we need to take care of
the boundary conditions.

I Anytime the capacity of the knapsack W = 0 the solution is
just 0.

I Also we need to take int account the case when wn >W . In
this case S(n,W) = S(n − 1,W)

Hikmat Farhat Algorithm Design

Knapsack(w ,v ,W)

/* if W = 0 then solution for any */

/* number of items is 0 */

for i = 1 to n do
S[i][0]=0

/* for any W zero items gives 0 */

for i = 1 to W do
S[0][i]=0

/* Now the solution */

for j = 1 to W do
for i = 1 to n do

S [i][j]=max (S [i − 1][j], v [i] + S [i − 1][j − w [i]])

Hikmat Farhat Algorithm Design

Example

Consider the following instance of the knapsack problem where the
knapsack size is W = 13.

v1 = 2 w1 = 3 v1
w1

= 0.66

v2 = 4 w2 = 6 v2
w2

= 0.66

v3 = 5 w3 = 7 v3
w3

= 0.71

v4 = 6 w4 = 8 v4
w4

= 7.5

Note that a greedy approach would choose items v4 and v1 for a
total value of 8 whereas the optimal is 9 by choosing items 3 and 2.

Hikmat Farhat Algorithm Design

n\w 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 2 2 2 2 2 2 2 2 2 2 2
2 0 0 0 2 2 2 4© 4 4 6 6 6 6 6
3 0 0 0 2 2 2 4 5 5 6 7 7 7 9©
4 0 0 0 2 2 2 4 5 6 6 7 8 8 9

Hikmat Farhat Algorithm Design

Subset sum

I We are given an array A of n elements and an integer value S
and we ask if there is a subset of A whose sum is S

I We start with the last element. There are two choices

1. Either the last element is in the sum in which case we have to
find a subset of of the first n − 1 elements whose sum is
S − A[n]

2. Or the last element is not in the sum in which case we have to
find a subset of the first n − 1 elements whose sum is S

I The above reasoning will lead to

s u b s e t (A, n , S){
i f (n==0) r e t u r n f a l s e
i f (S==0) r e t u r n t r u e
r e t u r n s u b s e t (A, n−1,S) | | s u b s e t (A, n−1,S−A [n])

Hikmat Farhat Algorithm Design

Example

I Consider the array A = 2, 7, 3, 1 and S = 6.

subset(A,4,6)=subset(A,3,6)||subset(A,3,5)=false||true

subset(A,3,6)=subset(A,2,6)||subset(A,2,3)=false||false=false

subset(A,3,5)=subset(A,2,5)||subset(A,2,2)=false||true=true

subset(A,2,6)=false

subset(A,2,3)=false

subset(A,2,5)=false

subset(A,2,2)=true

Hikmat Farhat Algorithm Design

Bottom up

We use the recurrence relation that we have obtained to solve the
subsetsum problem in a bottom up manner. First note that if the
required sum is 0 then the answer is always true. Also if the
number of elements is 0 then with the exception of sum=0 all the
answers should be false.

Hikmat Farhat Algorithm Design

SS(A,S)

/* if S = 0 then solution for any */

/* number of items is True */

for i = 0 to n do
R[i][0]=True

/* for any S other than zero */

/* 0 items is False */

for j = 1 to S do
R[0][j]=False

/* Now the solution */

for i = 1 to n do
for j = 1 to S do

R[i][j]=R[i − 1][j] or R[i − 1][j − A[i]]

Hikmat Farhat Algorithm Design

Balanced Partition of a Set

I Suppose that you have a set of n integers A = {A1, . . . ,An}.
I Let S1 and S2 be a partition of A i.e. S1 ∪ S2 = A and

S1 ∩ S2 = ∅.
I Let sum1 =

∑
a∈S1 a and sum2 =

∑
a∈S2 be the sum of

elements in each partition.

I Our goal is to find S1 and S2 such that |sum1 − sum2| is
minimum.

Hikmat Farhat Algorithm Design

I Let σ =
∑

a∈A a, i.e. the sum of all elements in A.

I Given A we know how to find if there is a subset of A whose
sum is k .

I Let p(i , j) be true if the first i elements of A have a subset
whose sum is j .

I This is the subset sum problem we have studied previously.

I Computer p(i , j) for all 1 ≤ i ≤ n and 0 ≤ j ≤ σ/2.

I then consider the set

{|j − σ/2| | p(n, j) = 1}

I Our answer is

min
j
{|j − σ/2| | p(n, j) = 1}

Hikmat Farhat Algorithm Design

Example

Consider the set ={1, 6, 11} whose sum is 18 so σ/2 = 9. We
compute the subset sum problem in a bottom up fashion we get

Hikmat Farhat Algorithm Design

Sequence Alignment

I For example

ACTGG−ATT
ACGGGTATG

I We need to align two sequence to minimize the ”cost”.

I Cost the sum of costs where each dash incurs a cost αgap and
cost of mismatch α.

I Note that we are assuming that all mismatches are the same
cost even though it is easy to modify the cost to depend on
the type of mismatch

Hikmat Farhat Algorithm Design

I Given strings X = x1 . . . xn and Y = y1 . . . ym we need to find
the ”best” alignment: the one that leads to the smallest cost

I Let Xi be the prefix of X of size i , i.e. Xi = x1 . . . xi .

I Let opt(Xn,Ym) be the optimal solution for prefixes Xn = X
and Ym = Y . We can write

opt(Xn,Ym) = min

α + opt(Xn−1,Ym−1)

αgap + opt(Xn−1,Ym)

αgap + opt(Xn,Ym−1)

Hikmat Farhat Algorithm Design

Base cases

I Before we implement the algorithm we need to determine the
value of the base cases: opt(Xi , 0) and opt(0,Yi).

I Note that when one string is empty we need i gaps to match
the other so

I opt(Xi , 0) = opt(0,Yi) = i · αgap

Hikmat Farhat Algorithm Design

Example

Consider the two strings X = ”CG” and Y = ”CA” with the cost
of a gap αg=3 and cost of mismatch α = 7. The solution obtained
from the table below is CG− and C − A.

X\ Y ”” C CA

”” 0 3 6
C 3 ↖ 0 3

CG 6 ↑ 3 ← 6

Hikmat Farhat Algorithm Design

Bellman-Ford Single Source

I The Bellman-Ford algorithm uses dynamic programming to
compute the shortest path in graph G = 〈V ,E 〉

I The quantity to be optimized is the shortest distance using at
most i edges.

I Let d [u, i] be the shortest path distance from some source s
to destination u using at most i edges.

I Let cv ,u be the cost of edge (v , u) ∈ E or ∞ otherise.

I Then d [u, i + 1] can be written as

d [u, i + 1] = min(d [u, i],min
v∈V

(d [v , i] + cv ,u))

Hikmat Farhat Algorithm Design

Example

In the graph below we would lile to use the Bellman-Ford algorithm
to compute the shortest path from node a to all other nodes.

a b d

c

e

f

−1 6

−3

3

2

4

−5

−1

−7

Hikmat Farhat Algorithm Design

0 1 2 3 4 5

a 0 0 0 0 0 0
b ∞ -1 -2 -2 -2 -6
c ∞ 3 3 3 3 3
d ∞ ∞ 5 4 -3 -3
e ∞ ∞ 5 5 5 5
f ∞ ∞ 7 -2 -2 -2

Hikmat Farhat Algorithm Design

Implementation

I Encoding the edge weights

0-1:-1

0-2:3

1-3:6

2-1:-5

2-4:2

2-5:4

3-1:-3

4-5:-7

5-3:-1

I We choose a large value compared to the edge weights in the
graph, say 100.

Hikmat Farhat Algorithm Design

Solution for the example

0 1 2 3 4 5

a 0 0 0 0 0 0
b 100 -1 -2 -2 -2 -6
c 100 3 3 3 3 3
d 100 99 5 4 -3 -3
e 100 100 5 5 5 5
f 100 93 7 -2 -2 -2

Hikmat Farhat Algorithm Design

1 i m p o r t numpy as np
2 num=6
3 opt=np . f u l l ((num , num) , 1 0 0)
4 opt [0 ,0]=0
5 edge=np . f u l l ((num , num) , 1 0 0)
6

7 f=open (” graph1 . t x t ” ,” r ”)
8 i n p u t=f . r e a d ()
9 l i n e s=i n p u t . s p l i t l i n e s ()

10 f o r l i n e i n l i n e s :
11 x=l i n e . s p l i t (” : ”)
12 c o s t=x [1]
13 y=x [0] . s p l i t (”−”)
14 s=y [0]
15 d=y [1]
16 edge [i n t (s) , i n t (d)]= i n t (c o s t)

Hikmat Farhat Algorithm Design

1 pred=np . f u l l (num,−1)
2 f o r l i n ran ge (1 , num) : #i t e r a t e o v e r l e n g t h
3 f o r n i n ra nge (0 ,num) : #i t e r a t e o v e r nodes
4 opt [n , l]= opt [n , l −1]
5 f o r m i n ra ng e (0 , num):# i t e r a t e o v e r n e i g h b o r s
6 s=opt [m, l −1]+edge [m, n]
7 i f s<opt [n , l] :
8 opt [n , l]= s
9 pred [n]=m

Hikmat Farhat Algorithm Design

