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Binary Search

The simplest example of divide-and-conquer strategy is probably
binary search.

Given a sorted array A of n elements and a value x , return true if x
is an element of A.

The key in this problem is that A is sorted.

We follow a divide-and-conquer strategy by considering the ”middle”
element m of A, and considering the half of A to the left of m, L, and
the other half to the right of m, R.

Since A is sorted then all elements of L are less or equal than m and
all elements of R are greater or equal than m.
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Binary Search Code

1 b o o l b i n a r y S e a r c h ( i n t ∗A, i n t l , i n t r , i n t x ){
2 i n t m=( l+r ) / 2 ;
3

4 i f ( x==A [m] ) r e t u r n t r u e ;
5 i f ( x>A [m] )
6 r e t u r n b i n a r y S e a r c h (A,m+1, r , x ) ;
7 e l s e
8 r e t u r n b i n a r y S e a r c h (A, l ,m−1,x ) ;
9 }

The complexity of the above code obeys the recurrence

T (n) = T (
n

2
) + Θ(1)

The solution of the recurrence (see Master theorem later) is
T (n) = Θ(log n).
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Counting Inversions

Given an array A, a pair of elements (A[i ],A[j ]) is said to be an
inversion iff i < j and A[i ] > A[j ].

The simplest way to count the number of inversions in an array is
using a double loop

1 count =0;
2 f o r ( i n t i =1; i<n ; i ++){
3 f o r ( i n t j =0; j<i −1; j ++){
4 i f (A [ i ]<A [ j ] ) count++;
5 }
6 }

Obviously the above algorithm is Θ(n2).

We will use divide-and-conquer to count the inversions in Θ(n log n).
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Modified Merge Sort

X

If we divide an array in two then the total number of inversions is the
sum of three parts

1 Inversions in the left part
2 Inversions in the right part
3 Inversions of elements of the right part relative to elements on the left

part

The first two part are just recursive calls.

The third part can be computed using the merge procedure of merge
sort

Note that in the above figure the inversions due to element x relative
to elements in the left part are the same whether the parts are sorted
or not.
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The basic idea for the counting algorithm is to modify the merge
procedure of merge sort to allow us to count the inversion.

Given two sorted arrays L and R, we merge them the same way as it
was done using merge sort

Let i and j be the indices of elements of L and R respectively where
initially i = j = 0 we merge L and R into an array C indexed by k .

If L[i ] < R[j ] then L[i ] is copied to C [k] and i = i + 1 and k = k + 1.

If R[j ] < L[i ] then R[j ] is copied to C [k] and j = j + 1 and k = k + 1.
Also in this case all the remaining elements of L are larger than R[j ]
which means that the number of inversions is incremented by the
number of elements remaining in L.
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Example

L = {2
↑
i

, 7, 12} and R = {4
↑
j

, 8, 15}.

First copy 2 to C to obtain L = {2, 7
↑
i

, 12} and R = {4
↑
j

, 8, 15}.

Copy 4 to C and increment the number of inversions by 2 because
there are two elements remaining in L, namely 7 and 12. to obtain

L = {2, 7
↑
i

, 12} and R = {4, 8
↑
j

, 15}.

Copy 7 to C to obtain L = {2, 7, 12
↑
i

} and R = {4, 8
↑
j

, 15}.

Copy 8 to C and increment the number of inversions by 1 because
there is one element remaining in L, namely 12.

The total number of inversions is 3.
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Master Theorem (special case)

A generalization of the previous cases is done using a simplified
version of the Master theorem

T (n) = aT (n/b) + Θ(nd)
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T (n) = aT (n/b) + cnd

= a
[
aT (n/b2) + c(n/b)d

]
+ cnd

= a2T (n/b2) + cnd(a/bd) + cnd

= a2
[
aT (n/b3) + c(n/b2)d

]
+ cnd(a/bd) + cnd

= a3T (n/b3) + cnd(a/bd)2 + cnd(a/bd) + cnd

= aiT (n/bi ) + cnd
i−1∑
l=0

(a/bd)l

The above reaches T (1) when bk = n for some k . We get
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T (n) = akT (1) + cnd
k−1∑
l=0

(a/bd)l

There are three cases

1 a = bd

2 a < bd

3 a > bd
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case 1: a = bd

If a = bd (i.e a
bd

= 1) then we get

T (n) = akT (1) + cnd · k

Since k = logb n then

T (n) = alogb nT (1) + cnd logb n

= nlogb aT (1) + cnd logb n

= ndT (1) + cnd logb n

= Θ(nd log n)
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case 2: a < bd

T (n) = akT (1) + cnd
k−1∑
l=0

(a/bd)l

= akT (1) + cnd
(a/bd)k − 1

(a/bd)− 1

for large n, i.e. n→∞ then k = logb n→∞ and since a < bd then
a/bd → 0 Therefore

T (n) = nlogb aT (1) + cnd

but a < bd ⇒ logb a < d and finally

T (n) = Θ(nd)

Hikmat Farhat Analysis of Algorithms April 7, 2020 12 / 1



case 3: a > bd

In this case we can write

T (n) = akT (1) + cnd
(a/bd)k − 1

(a/bd)− 1

= nlogb aT (1) + gnd(a/bd)k

= nlogb aT (1) + gnd(a/bd)logbn

= nlogb aT (1) + gndnlogb(a/b
d )

= nlogb aT (1) + gndn(−d+logba)

= Θ(nlogb a)
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Maximum Subarray Sum

Given an array A of n elements we ask for the maximum value of

j∑
k=i

Ak

For example if A is -2,11,-4,13,-5,-2 then the answer is 20 =
∑4

k=2
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Brute Force
Compute the sum of all subarrays of an array A of size n and return
the largest.
A subarray starts at index i and ends at index j where 0 ≤ i < n and
0 ≤ j < n.
Therefore for each possible i and j compute the sum of A[i ] . . .A[j ].

i n t maxSubarray ( i n t ∗A, i n t n ){
i n t sum=0, max=A [ 0 ] ;

f o r ( i n t i =0; i<n ; i ++){
f o r ( j=i ; j<n ; j ++){

sum=0;
f o r ( i n t k=i ; k<=j ; k++)

sum+=A [ k ] ;
i f (max<sum ) max=sum ;

}
}

r e t u r n max ;
}
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Complexity

To determine the complexity of the brute force approach we can see
that there are 3 nested loop therefore the complexity of the problem
depends on how many times line 14 is executed

The number of executions is

n−1∑
i=0

n−1∑
j=i

j∑
k=i

1 =
n−1∑
i=0

n−1∑
j=i

j − i + 1

To evaluate the first sum let m = j − i + 1 then

n−1∑
j=i

j − i + 1 =
n−i∑
m=1

m = (n − i)(n − i + 1)/2
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Finally, we get

n−1∑
i=0

(n − i)(n − i + 1)/2 =
n3 + 3n2 + 2n

6

= Θ(n3)
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Divide and Conquer

general technique that divides a problem in 2 or more parts (divide)
and patch the subproblems together (conquer).

In this context if we divide an array in two subarrays. We have 3
possibilities:

1 max is entirely in the first half
2 max is entirely in the second half
3 max spans both halves.

Therefore the solution is max(left,right,both)
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Both halves
If the sum spans both halves it means it includes the last element of
the first half and the first element of the second half
This means that the we are looking for the sum of

1 Max subsequence in first half that includes the last element
2 Max subsequence in the second half that includes the first element

S3 = max
0≤i<n/2
n/2≤j<n

j∑
k=i

A[k]

= max
0≤i<n/2
n/2≤j<n

n/2−1∑
k=i

A[k] +

j∑
k=n/2

A[k]


= max

0≤i<n/2

n/2−1∑
k=i

A[k] + max
n/2≤j<n

j∑
k=n/2

A[k]
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Computing max that spans both halves

computeBoth (A,left,right)

sum1 ← sum2 ← 0
center ← (left + right)/2
for i = center to left do

sum1 ← sum1 + A[i ]
if sum1 > max1 then

max1 ← sum1

for j = center + 1 to right do
sum2 ← sum2 + A[j ]
if sum2 > max2 then

max2 ← sum2

return max1 + max2
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Recursive Algorithm

maxSubarray(A, left, right)

if left = right then
return A[left]

center ← (left + right)/2
S1 ← maxSubarray(A, left, center)
S2 ← maxSubarray(A, center + 1, right)
S3 ← computeBoth(A, left, right)
return max(S1,S2, S3)
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Complexity

Given an array of size n the cost of the call to maxSubarray is divided
into two computations

1 The work of computeBoth which is Θ(n).
2 Two recursive calls on the problem with half the size
3 Therefore the total cost can be written as

T (n) = 2T (n/2) + Θ(n)

Using the Master theorem we get T (n) = Θ(n log n)
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Medians

The median,m of a sequence of n numbers is defined such that half of
values (more precisely bn/2c) of the sequence are bigger than m. For
example for the sequence 48, 5, 10, 25, 42 the median is 25.

Obviously the median of n numbers can be computed by sorting the
sequence in Θ(n log n) steps then selecting the value at position bn/2c
Can we do better?

It turns out that yes, by solving the general problem of selecting the
kth smallest element of an array of n elements.
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Strategy

We use a divide and conquer strategy as follows:
1 Given an array A of n elements, select randomly a value m from A.
2 Partition A into three arrays: L that contains all the elements smaller

than m in no particular order, E all the elements that are equal to m
and R an array containing all the elements bigger than m.

3 Now we have three cases:

1 if k ≤| L | then the k th element is in L and we call the algorithm
recursively on the, smaller array, L

2 if | L |< k ≤| L | + | E | then the k th element is in E and therefore it is
equal to m.

3 if m >| L | + | E | then the k th element is in R and we call the
algorithm recursively on the, smaller array, R
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Select(A, left, right, k)

if left = right then
return A[left]

m← random(left, right)
val ← A[m]
Partition(A, L,E ,R,m)

if k ≤| L | then
return Select(A, left, left+ | L | −1, k)

else if | L |< k ≤| E | + | L | then
return val

else
return Select(A, left+ | E | + | L |, right, k− | E | − | L |)
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The partition algorithm

The partition algorithm is a simple extension of the partition
algorithm used for quicksort.

In the select algorithm we had the arrays in the order L, E , R.

for convenience and similar to the partition in quicksort the partitions
will look like the figure below
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Partitioning Algorithm

Assuming that the pivot is already in place in a[r ].

PARTITION(a,p,r)

i ← p − 1
k ← p
j ← r
pivot ← a[r ]
while k < j do

if a[k] > pivot then
k ← k + 1

else if a[k] < pivot then
i ← i + 1
swap(a[i ], a[k])
k ← k + 1

else
j ← j − 1
swap(a[j ], a[k])

return i , j
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The partition algorithm is used by the select algorithm as follows:
I the array L is a[p] . . . a[i ].
I the array E is a[j ] . . . a[r ].
I the array R is a[i + 1] . . . a[j − 1].
I In code for the select algorithm we assumed that the order of the

subarrays is L followed by E followed by R.
I Using the partitioning we modified select is
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Select(A, left, right, k)

if left==right then
return A[left]

m← random(left, right)
val ← A[m]
Partition(A, i , j ,m)

if k ≤ i − left + 1 then
return Select(A, left, i , k)

else if k ≤ i − s + e − j + 2 then
return val

else
return Select(A, i + 1, j − 1, k − (right − left + i − j + 2))
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the complexity of the k selection problem depends on both the
recursive part and the partition part.

for an array of n items the partition part is clearly Θ(n).

The recursive part depends on the pivot. Suppose the pivot is the i th

element then the subproblems are of size i (i.e. from 0 to i − 1) and
n − i − 1 (i.e from i + 1 and n − 1)

In the k selection problem, unlike quicksort, the recursion is called on
only one subproblem.

the worst case behavior occurs when the algorithm repeatedly selects
the largest or the smallest element as the pivot.

in this case the subproblem size is n − 1 and the algorithm obeys the
recurrence

T (n) = T (n − 1) + Θ(n)

whose solution is T (n) = Θ(n2)
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Average case complexity

The average case complexity is much better than the worst case

we start by assuming that any index can be equally likely selected as
the pivot

Since the algorithm selects only one subproblem we can bound the
complexity by selecting the largest subproblem. Let Xi be a random
variable

T (n) = T (max(i , n − i − 1)) + Θ(n)

averaging over all possible values of i we get

T (n) =
1

n

n−1∑
i=0

T (max(i , n − i − 1)) + Θ(n)

=
2

n

n−1∑
i=bn/2c

T (i) + Θ(n)
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we use the substitution method to prove that the average case complexity
is O(n). To show that T (n) = O(n) we need to find c > 0 and n0 such
that T (n) ≤ cn for all n ≥ n0.

Now assume that T (k) ≤ c · k then the recurrence becomes

T (n) ≤ 2

n

n−1∑
k=bn/2c

c · k + a · n
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Keeping mind that bn/2c ≥ n/2− 1

T (n) ≤ 2 · c
n

n−1∑
k=0

k −
bn/2c−1∑
k=0

 k + a · n

≤ 2 · c
n

[n(n − 1)/2− bn/2c(bn/2c − 1)/2] + a · n

≤ 2 · c
n

[n(n − 1)/2− (n/2− 1)(n/2− 2)/2] + a · n

≤ c

n

[
n2 − n − n2/4 + 3n/2− 2

]
+ a · n

≤ c

n
(3n2/4 + n/2− 2) + a · n

≤ c · n −
(c · n

4
− c

2
− a · n

)

choose c > 4a and n0 = 2c
c−4a
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Multiplying two numbers

Given 2 n-bit numbers the ”traditional” multiplication takes Θ(n2)
since there are n2 2-bit multiplications and Θ(n) additions of n − bit
numbers (for a total of Θ(n2).

In this section we give a divide-and-conquer algorithm to compute the
product of two n-bit numbers.

The basic ideas is that an n − bit x can be divided into the most
significant n/2 bits and least significant n/2 bit. Two numbers x and
y can be written as x = x1 · 2n/2 + x0 and y = y1 · 2n/2 + y0.
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x1 x0

y0y1

n /2 bits n /2 bits
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Therefore x · y can be written as

(x1 · 2n/2 + x0) · (y1 · 2n/2 + y0) =

x1 · y1 · 2n+

(x1 · y0 + x0 · y1) · 2n/2 + x0 · y0

We have reduced the multiplication of n-bit numbers to that of
n/2-bit numbers and multiplication by 2n and 2n/2.

Multiplication by 2n is equivalent with n-bit left shift and it can be
done in Θ(n).

Therefore the recurrence can be written as

T (n) = 4T (n/2) + Θ(n)

Using the master theorem : a = 4, b = 2, d = 1 The solution is
T (n) = Θ(nlog2 4) = Θ(n2) !!!
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We can get a better performance by noticing the following

(x1 + x0) · (y1 + y0) = x1 · y1 + x0 · y0 + (x1 · y0 + x0 · y1)

Rearranging terms we get

(x1 · y0 + x0 · y1) = (x1 + x0) · (y1 + y0)− x1 · y1− x0 · y0

Since x1 · y1 and x0 · y0 are already computed then we need one
extra multiplication instead of two. The recurrence becomes

T (n) = 3T (n/2) + Θ(n)

Thus T (n) = Θ(nlog2 3) = Θ(n1.58)
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Divide-and-Conquer algorithm

1 i n t m u l t i p l y ( i n t x , i n t y , i n t n ){
2 i n t x1=x>>n / 2 ;
3 i n t y1=y>>n / 2 ;
4 i n t mask=(1<<n /2)−1;
5 i n t x0=x & mask ;
6 i n t y0=y &mask ;
7 i n t x1y1=m u l t i p l y ( x1 , y1 , n / 2 ) ;
8 i n t x0y0=m u l t i p l y ( x0 , y0 , n / 2 ) ;
9 i n t sum=x1y1+x0y0−m u l t i p l y ( ( x0+x1 ) , ( y0+y1 ) , n / 2 ) ;

10 x1y1=x1y1<<n ;
11 sum=sum<<n / 2 ;
12 r e t u r n x1y1+sum+x0y0 ;
13 }
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Tower of Hanoi

Let move(n, start, end , aux) be the function that moves n bricks from
peg start to peg end using peg aux as auxiliary.

Suppose that we can move n − 1 bricks from the start peg and put
them in aux then all we have to do is move the remaining brick from
start to end then transfer the n − 1 from aux to end

we can write

1 move ( n , s t a r t , end , aux ){
2 i f ( n==1)cout<<”(”<< s t a r t <<”,”<<end<<”)”<<e n d l ;
3 e l s e {
4 move ( n−1, s t a r t , aux , end ) ;
5 move ( 1 , s t a r t , end , aux ) ;
6 move ( n−1,aux , end , s t a r t ) ;
7 }
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Complexity
The solution to the Tower of Hanoi obeys the following recurrence
relation

T (n) = 2T (n − 1) + Θ(1)

= 2T (n − 1) + c

= 2 [2T (n − 2) + c] + c

= 22T (n − 2) + 2c + c

= 22 [2T (n − 3) + c] + 2c + c

= 23T (n − 3) + 22c + 21c + 20c

. . . . . .

= 2kT (n − k) +
k−1∑
i=0

2ic

= 2kT (n − k) + (2k − 1)c
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The recursion stops when k = n − 1 and we get

T (n) = 2n−1T (1) + (2n−1 − 1)c = Θ(2n)
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