Analysis of Algorithms Divide and Conquer Strategy

Hikmat Farhat

April 7, 2020

そロトー

Binary Search

- The simplest example of divide-and-conquer strategy is probably binary search.
- Given a sorted array A of n elements and a value x, return true if x is an element of A.
- \bullet The key in this problem is that A is **sorted**.
- We follow a divide-and-conquer strategy by considering the "middle" element m of A , and considering the half of A to the left of m , L , and the other half to the right of m , R .
- \bullet Since A is sorted then all elements of L are less or equal than m and all elements of R are greater or equal than m .

Binary Search Code

```
_1 bool binary Search (int *A, int l, int r, int x) {
2 int m=(l+r)/2;
3
4 if (x= A[m]) return true;
5 \quad \text{if } (x > A[m])6 return binary Search (A,m+1,r,x);
7 e l s e
8 return binary Search (A, I, m-1, x);
9 }
```
• The complexity of the above code obeys the recurrence

$$
T(n) = T(\frac{n}{2}) + \Theta(1)
$$

The solution of the recurrence (see Master theorem later) is $T(n) = \Theta(\log n)$.

Counting Inversions

- Given an array A, a pair of elements $(A[i], A[j])$ is said to be an inversion iff $i < i$ and $A[i] > A[i]$.
- The simplest way to count the number of inversions in an array is using a double loop

```
_1 count=0:
2 for (int i = 1; i < n; i++){
3 for ( in t j = 0; j < i - 1; j + + ){
         if (A[i] < A[i]) count++;\}6 }
```
- Obviously the above algorithm is $\Theta(n^2)$.
- \bullet We will use divide-and-conquer to count the inversions in $\Theta(n \log n)$.

つくい

Modified Merge Sort

- If we divide an array in two then the total number of inversions is the sum of three parts
	- **1** Inversions in the left part
	- Inversions in the right part
	- Inversions of elements of the right part relative to elements on the left part
- The first two part are just recursive calls.
- The third part can be computed using the merge procedure of merge sort
- \bullet Note that in the above figure the inversions due to element x relative to elements in the left part are the same whether the parts are sorted or not. つくい

- The basic idea for the counting algorithm is to modify the merge procedure of merge sort to allow us to count the inversion.
- \bullet Given two sorted arrays L and R, we merge them the same way as it was done using merge sort
- \bullet Let *i* and *j* be the indices of elements of *L* and *R* respectively where initially $i = j = 0$ we merge L and R into an array C indexed by k.
- If $L[i] < R[j]$ then $L[i]$ is copied to $C[k]$ and $i = i + 1$ and $k = k + 1$.
- If $R[j] < L[i]$ then $R[j]$ is copied to $C[k]$ and $j = j + 1$ and $k = k + 1$. Also in this case all the remaining elements of L are larger than $R[j]$ which means that the number of inversions is incremented by the number of elements remaining in L.

 200

∢ロ ▶ ∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Example

•
$$
L = \{2, 7, 12\}
$$
 and $R = \{4, 8, 15\}$.

- First copy 2 to C to obtain $L=\{2,7,12\}$ and $R=\{4,8,15\}.$ i j
- Copy 4 to C and increment the number of inversions by 2 because there are two elements remaining in L , namely 7 and 12. to obtain
- $L = \{2, 7, \atop \uparrow \atop \downarrow \end{pmatrix}$, 12} and $R=\{4,8 \atop \scriptstyle \int\limits_{j}^{+}$, 15}.
- Copy 7 to C to obtain $L=\{2,7,12\}$ and $R=\{4,8,15\}.$
- Copy 8 to C and increment the number of inversions by 1 because there is one element remaining in L, namely 12.

i

• The total number of inversions is 3.

つくい

j

Master Theorem (special case)

• A generalization of the previous cases is done using a simplified version of the Master theorem

$$
T(n) = aT(n/b) + \Theta(n^d)
$$

4日 8

$$
T(n) = aT(n/b) + cn^{d}
$$

= $a[aT(n/b^{2}) + c(n/b)^{d}] + cn^{d}$
= $a^{2}T(n/b^{2}) + cn^{d}(a/b^{d}) + cn^{d}$
= $a^{2}[aT(n/b^{3}) + c(n/b^{2})^{d}] + cn^{d}(a/b^{d}) + cn^{d}$
= $a^{3}T(n/b^{3}) + cn^{d}(a/b^{d})^{2} + cn^{d}(a/b^{d}) + cn^{d}$
= $a^{j}T(n/b^{j}) + cn^{d} \sum_{l=0}^{i-1} (a/b^{d})^{l}$

The above reaches $\mathcal{T}(1)$ when $b^k=n$ for some $k.$ We get

 299

K ロ ト K 何 ト K 手

$$
T(n) = a^{k} T(1) + cn^{d} \sum_{l=0}^{k-1} (a/b^{d})^{l}
$$

There are three cases

\n
$$
a = b^d
$$
\n

\n\n $a < b^d$ \n

\n\n $a < b^d$ \n

$$
3\, a > b^a
$$

メロトメ 御 トメ 君 トメ 君 ト

case 1: $a = b^d$

If $a=b^d$ (i.e $\frac{a}{b^d}=1)$ then we get $T(n) = a^k T(1) + cn^d · k$

Since $k = \log_b n$ then

$$
T(n) = a^{\log_b n} T(1) + cn^{d} \log_b n
$$

= $n^{\log_b a} T(1) + cn^{d} \log_b n$
= $n^{d} T(1) + cn^{d} \log_b n$
= $\Theta(n^{d} \log n)$

 \equiv \cap α

b.

K ロ ▶ K 側 ▶ K 급

case 2: $a < b^d$

$$
T(n) = a^{k} T(1) + cn^{d} \sum_{l=0}^{k-1} (a/b^{d})^{l}
$$

$$
= a^{k} T(1) + cn^{d} \frac{(a/b^{d})^{k} - 1}{(a/b^{d}) - 1}
$$

for large n , i.e. $n \to \infty$ then $k = \log_b n \to \infty$ and since $a < b^d$ then $a/b^d \rightarrow 0$ Therefore

$$
T(n) = n^{\log_b a} T(1) + cn^d
$$

but $a < b^d \Rightarrow \log_b a < d$ and finally

$$
T(n) = \Theta(n^d)
$$

 2990

 4 ロ } 4 \overline{r} } 4 \overline{z} }

case 3: $a > b^d$

In this case we can write

$$
T(n) = a^{k} T(1) + cn^{d} \frac{(a/b^{d})^{k} - 1}{(a/b^{d}) - 1}
$$

= $n^{\log_{b} a} T(1) + gn^{d} (a/b^{d})^{k}$
= $n^{\log_{b} a} T(1) + gn^{d} (a/b^{d})^{\log_{b} n}$
= $n^{\log_{b} a} T(1) + gn^{d} n^{\log_{b} (a/b^{d})}$
= $n^{\log_{b} a} T(1) + gn^{d} n^{(-d + \log_{b} a)}$
= $\Theta(n^{\log_{b} a})$

B

K ロ ⊁ K 御 ≯ K 差 ▶ K 差

Maximum Subarray Sum

 \bullet Given an array A of n elements we ask for the maximum value of

\sum j $k=1$ A_k

For example if A is -2,11,-4,13,-5,-2 then the answer is $20 = \sum_{k=2}^4$

 QQ

Brute Force

- \bullet Compute the sum of all subarrays of an array A of size n and return the largest.
- A subarray starts at index i and ends at index i where $0 \le i \le n$ and $0 \le i \le n$.
- Therefore for each possible *i* and *j* compute the sum of $A[i] \ldots A[i]$.

```
int maxSubarray(int *A, int n){
  int sum=0, max=A[0];
```

```
for (int i = 0; i < n; i++){
       for (j=i ; j < n; j++){
            sum=0:
           for (int k=i; k\le i; k++)
                sum+ = A[k];
          if (max< sum) max= sum;}
  }
return max;
}
```
Complexity

- To determine the complexity of the brute force approach we can see that there are 3 nested loop therefore the complexity of the problem depends on how many times line 14 is executed
- The number of executions is

$$
\sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \sum_{k=i}^{j} 1 = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} j - i + 1
$$

• To evaluate the first sum let $m = i - i + 1$ then

$$
\sum_{j=i}^{n-1} j - i + 1 = \sum_{m=1}^{n-i} m = (n-i)(n-i+1)/2
$$

• Finally, we get

$$
\sum_{i=0}^{n-1} (n-i)(n-i+1)/2 = \frac{n^3 + 3n^2 + 2n}{6}
$$

= $\Theta(n^3)$

B

 \rightarrow -4 \equiv

K ロ ト K 御 ト K 店

Divide and Conquer

- **e** general technique that divides a problem in 2 or more parts (divide) and patch the subproblems together (conquer).
- In this context if we divide an array in two subarrays. We have 3 possibilities:
	- **1** max is entirely in the first half
	- **2** max is entirely in the second half
	- **3** max spans both halves.
- Therefore the solution is max(left, right, both)

Both halves

- If the sum spans both halves it means it includes the last element of the first half and the first element of the second half
- This means that the we are looking for the sum of
	- **1** Max subsequence in first half that includes the last element
	- 2 Max subsequence in the second half that includes the first element

$$
S_3 = \max_{\substack{0 \le i < n/2 \\ n/2 \le j < n}} \sum_{k=i}^{j} A[k]
$$
\n
$$
= \max_{\substack{0 \le i < n/2 \\ n/2 \le j < n}} \left[\sum_{k=i}^{n/2-1} A[k] + \sum_{k=n/2}^{j} A[k] \right]
$$
\n
$$
= \max_{0 \le i < n/2} \sum_{k=i}^{n/2-1} A[k] + \max_{n/2 \le j < n} \sum_{k=n/2}^{j} A[k]
$$

つくい

Computing max that spans both halves

```
computeBoth (A,left,right)
sum_1 \leftarrow sum_2 \leftarrow 0center \leftarrow (left + right)/2
for i = center to left do
    sum_1 \leftarrow sum_1 + A[i]if sum_1 > max_1 then
       max_1 \leftarrow sum_1for j = center + 1 to right do
    sum_2 \leftarrow sum_2 + A[j]if sum_2 > max_2 then
         max_2 \leftarrow sum_2return max_1 + max_2
```
Recursive Algorithm

```
maxSubarray(A, left, right)
```

```
if left = right then
    return A[left]
 \overline{\phantom{a}}center \leftarrow (left + right)/2
S_1 \leftarrow maxSubarray(A, left, center)
S_2 \leftarrow maxSubarray(A, center + 1, right)
S_3 \leftarrow computeBoth(A, left, right)return max(S_1, S_2, S_3)
```
 200

∢ロ ▶ ∢伺 ▶ ∢ミ ▶

Complexity

- Given an array of size n the cost of the call to $maxSubarray$ is divided into two computations
	- **1** The work of computeBoth which is $\Theta(n)$.
	- **2** Two recursive calls on the problem with half the size
	- Therefore the total cost can be written as

$$
T(n) = 2T(n/2) + \Theta(n)
$$

• Using the Master theorem we get $T(n) = \Theta(n \log n)$

Medians

- The *median, m* of a sequence of *n* numbers is defined such that half of values (more precisely $\lfloor n/2 \rfloor$) of the sequence are bigger than m. For example for the sequence 48, 5, 10, 25, 42 the median is 25.
- \bullet Obviously the median of *n* numbers can be computed by sorting the sequence in $\Theta(n \log n)$ steps then selecting the value at position $\lfloor n/2 \rfloor$
- Can we do better?
- If turns out that yes, by solving the general problem of selecting the k^{th} smallest element of an array of n elements.

Strategy

- We use a divide and conquer strategy as follows:
	- **1** Given an array A of n elements, select randomly a value m from A.
	- 2 Partition A into three arrays: L that contains all the elements smaller than m in no particular order, E all the elements that are equal to m and R an array containing all the elements bigger than m .
	- **3** Now we have three cases:
		- $\textbf{0}$ if $k \leq \mid L \mid$ then the k^th element is in L and we call the algorithm recursively on the, smaller array, L
		- $\hbox{\bf2}$ if $\mid L \mid < k \leq \mid L \mid + \mid E \mid$ then the k^{th} element is in E and therefore it is equal to m.
		- $\textbf{3}$ if $m > \mid L \mid + \mid E \mid$ then the k^th element is in R and we call the algorithm recursively on the, smaller array, R

 QQ

≮ロト ⊀何ト ⊀ ヨト ⊀ ヨト

```
Select(A, left, right, k)if left = right then
   return A[left]
 \overline{1}m \leftarrow random(left, right)
val \leftarrow A[m]
Partition(A, L, E, R, m)if k \leq L then
    return Select(A, left, left+ |L| -1, k)
else if |L| < k \leq |E| + |L| then
    return val
else
```
return Select(A, $left + | E | + | L |$, right, $k - | E | - | L |$)

 Ω

モロト イ母ト イヨトヨ

The partition algorithm

- The partition algorithm is a simple extension of the partition algorithm used for quicksort.
- \bullet In the select algorithm we had the arrays in the order L, E, R.
- **•** for convenience and similar to the partition in quicksort the partitions will look like the figure below

∢ ロ ▶ 《 何

Partitioning Algorithm

• Assuming that the pivot is already in place in $a[r]$. PARTITION(a,p,r) $i \leftarrow p-1$ $k \leftarrow p$ $j \leftarrow r$ $pivot \leftarrow a[r]$ while $k < i$ do if $a[k] > pivot$ then $k \leftarrow k + 1$ else if $a[k] < pi$ vot then $i \leftarrow i + 1$ swap $(a[i], a[k])$ $k \leftarrow k + 1$ else $j \leftarrow j - 1$ swap $(a[j], a[k])$ return i, j

モロメ オ何 トメ ヨ トメ ヨ

 \equiv \cap α

- The partition algorithm is used by the select algorithm as follows:
	- In the array L is $a[p] \dots a[i]$.
	- In the array E is $a[j] \dots a[r]$.
	- \triangleright the array R is $a[i + 1] \dots a[i 1]$.
	- \blacktriangleright In code for the select algorithm we assumed that the order of the subarrays is L followed by E followed by R .
	- \triangleright Using the partitioning we modified select is

 QQ

```
Select(A, left, right, k)if left==right then
    return A[left]
 \overline{\phantom{a}}m \leftarrow random(left, right)
val \leftarrow A[m]
Partition(A, i, j, m)if k \le i - left + 1 then
    return Select(A, left, i, k)else if k < i - s + e - i + 2 then
    return val
else
    return Select(A, i + 1, j - 1, k - (right - left + i - j + 2))
```
 200

≮ロト ⊀母ト ⊀∃ト ⊀

- **•** the complexity of the k selection problem depends on both the recursive part and the partition part.
- for an array of *n* items the partition part is clearly $\Theta(n)$.
- The recursive part depends on the pivot. Suppose the pivot is the $i^{\rm th}$ element then the subproblems are of size i (i.e. from 0 to $i - 1$) and $n-i-1$ (i.e from $i+1$ and $n-1$)
- In the k selection problem, unlike quicksort, the recursion is called on only one subproblem.
- the worst case behavior occurs when the algorithm repeatedly selects the largest or the smallest element as the pivot.
- in this case the subproblem size is $n 1$ and the algorithm obeys the recurrence

$$
T(n) = T(n-1) + \Theta(n)
$$

whose solution is $T(n) = \Theta(n^2)$

Average case complexity

- The average case complexity is much better than the worst case
- we start by assuming that any index can be equally likely selected as the pivot
- Since the algorithm selects only one subproblem we can bound the complexity by selecting the largest subproblem. Let X_i be a random variable

$$
T(n) = T(max(i, n-i-1)) + \Theta(n)
$$

 \bullet averaging over all possible values of *i* we get

$$
T(n) = \frac{1}{n} \sum_{i=0}^{n-1} T(max(i, n-i-1)) + \Theta(n)
$$

=
$$
\frac{2}{n} \sum_{i=\lfloor n/2 \rfloor}^{n-1} T(i) + \Theta(n)
$$

つくい

we use the substitution method to prove that the average case complexity is $O(n)$. To show that $T(n) = O(n)$ we need to find $c > 0$ and n_0 such that $T(n) \leq cn$ for all $n \geq n_0$.

• Now assume that $T(k) \leq c \cdot k$ then the recurrence becomes

$$
T(n) \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} c \cdot k + a \cdot n
$$

 Ω

• Keeping mind that $|n/2| \ge n/2 - 1$

$$
T(n) \leq \frac{2 \cdot c}{n} \left(\sum_{k=0}^{n-1} k - \sum_{k=0}^{\lfloor n/2 \rfloor - 1} \right) k + a \cdot n
$$

\n
$$
\leq \frac{2 \cdot c}{n} \left[n(n-1)/2 - \lfloor n/2 \rfloor (\lfloor n/2 \rfloor - 1)/2 \rfloor + a \cdot n
$$

\n
$$
\leq \frac{2 \cdot c}{n} \left[n(n-1)/2 - (n/2 - 1)(n/2 - 2)/2 \right] + a \cdot n
$$

\n
$$
\leq \frac{c}{n} \left[n^2 - n - n^2/4 + 3n/2 - 2 \right] + a \cdot n
$$

\n
$$
\leq \frac{c}{n} (3n^2/4 + n/2 - 2) + a \cdot n
$$

\n
$$
\leq c \cdot n - \left(\frac{c \cdot n}{4} - \frac{c}{2} - a \cdot n \right)
$$

choose $c > 4a$ and $n_0 = \frac{2c}{c-4a}$

 \equiv \cap α

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Multiplying two numbers

- Given 2 n-bit numbers the "traditional" multiplication takes $\Theta(n^2)$ since there are n^2 2-bit multiplications and $\Theta(n)$ additions of $n-bit$ numbers (for a total of $\Theta(n^2)$.
- In this section we give a divide-and-conquer algorithm to compute the product of two n-bit numbers.
- The basic ideas is that an $n bit \times$ can be divided into the most significant $n/2$ bits and least significant $n/2$ bit. Two numbers x and y can be written as $x = x_1 \cdot 2^{n/2} + x_0$ and $y = y_1 \cdot 2^{n/2} + y_0$.

[Analysis of Algorithms](#page-0-0) **April 7, 2020** 35 / 1

• Therefore $x \cdot y$ can be written as

$$
(x1 \cdot 2^{n/2} + x0) \cdot (y1 \cdot 2^{n/2} + y0) =
$$

x1 \cdot y1 \cdot 2^{n}+
(x1 \cdot y0 + x0 \cdot y1) \cdot 2^{n/2} + x0 \cdot y0

- We have reduced the multiplication of *n*-bit numbers to that of $n/2$ -bit numbers and multiplication by 2ⁿ and 2^{n/2}.
- Multiplication by 2^n is equivalent with *n*-bit left shift and it can be done in $\Theta(n)$.
- Therefore the recurrence can be written as

$$
T(n) = 4T(n/2) + \Theta(n)
$$

• Using the master theorem : $a = 4$, $b = 2$, $d = 1$ The solution is $T(n) = \Theta(n^{\log_2 4}) = \Theta(n^2)$!!!

 QQ

We can get a better performance by noticing the following

 $(x1 + x0) \cdot (y1 + y0) = x1 \cdot y1 + x0 \cdot y0 + (x1 \cdot y0 + x0 \cdot y1)$

• Rearranging terms we get

$$
(x1 \cdot y0 + x0 \cdot y1) = (x1 + x0) \cdot (y1 + y0) - x1 \cdot y1 - x0 \cdot y0
$$

• Since $x1 \cdot y1$ and $x0 \cdot y0$ are already computed then we need one extra multiplication instead of two. The recurrence becomes

$$
T(n) = 3T(n/2) + \Theta(n)
$$

Thus $T(n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.58})$

Divide-and-Conquer algorithm

```
1 int multiply (int x, int y, int n) \{2 int x1 = x >> n/2;
3 int y1=y>>n/2;
4 int mask=(1< < n /2) -1;
5 int x0=x & mask:
6 int y0=y &mask;
\tau int x1y1=multiply (x1, y1, n/2);
8 int x0y0=multiply (x0, y0, n/2);
9 int sum=x1y1+x0y0-multiply ((x0+x1), (y0+y1), n/2);
_{10} \times 1y1=\times1y1<<n;
11 sum=sum<<n / 2;
12 return x1y1+sum+x0y0;
13 }
```
 QQ

Tower of Hanoi

- Let move(n, start, end, aux) be the function that moves n bricks from peg start to peg end using peg aux as auxiliary.
- Suppose that we can move $n 1$ bricks from the start peg and put them in **aux** then all we have to do is move the remaining brick from start to end then transfer the $n - 1$ from aux to end

we can write

```
_1 move(n, start, end, aux){
2 if (n == 1)cout <<"("<<start <<","<<end<<")"<<endl;
3 else \{4 move (n-1, start, aux, end);
5 move (1, start, end, aux);6 move (n-1,aux, end, start);
7 }
```
つくい

Complexity

The solution to the Tower of Hanoi obeys the following recurrence relation

$$
T(n) = 2T(n-1) + \Theta(1)
$$

= 2T(n-1) + c
= 2[2T(n-2) + c] + c
= 2²T(n-2) + 2c + c
= 2² [2T(n-3) + c] + 2c + c
= 2³T(n-3) + 2²c + 2¹c + 2⁰c

$$
= 2k T(n - k) + \sum_{i=0}^{k-1} 2i c
$$

= 2^k T(n - k) + (2^k – 1)c

.

э

イロト イ母 トイヨ トイ

• The recursion stops when $k = n - 1$ and we get

$$
T(n) = 2^{n-1}T(1) + (2^{n-1} - 1)c = \Theta(2^n)
$$

Ξ

 299

K ロ ▶ K 側 ▶ K 급