Analysis of Algorithms

Divide and Conquer Strategy

Hikmat Farhat

April 7, 2020

=] = = E A
Hikmat Farhat Analysis of Algorithms

Binary Search

@ The simplest example of divide-and-conquer strategy is probably
binary search.

@ Given a sorted array A of n elements and a value x, return true if x
is an element of A.

@ The key in this problem is that A is sorted.

@ We follow a divide-and-conquer strategy by considering the "middle”
element m of A, and considering the half of A to the left of m, L, and
the other half to the right of m, R.

@ Since A is sorted then all elements of L are less or equal than m and
all elements of R are greater or equal than m.

Hikmat Farhat Analysis of Algorithms April 7, 2020 2/1

Binary Search Code

1 bool binarySearch(int *A,int |,int r,int x){
2 int m=(l+r)/2;
3
4 if (x=A[m]) return true;
5 if (x>A[m])
6 return binarySearch (A ,m+1,r,x);
7 else
8 return binarySearch(A, | ,m—1,x);
9
}

@ The complexity of the above code obeys the recurrence
n

T(n) =T(

)+0(1)

@ The solution of the recurrence (see Master theorem later) is
T(n) = ©(log n).

Hikmat Farhat Analysis of Algorithms April 7, 2020

3/1

Counting Inversions

e Given an array A, a pair of elements (A[i], A[j]) is said to be an
inversion iff i < j and A[i] > A[j].

@ The simplest way to count the number of inversions in an array is
using a double loop

count=0;
for(int i=1;i<n;i++){
for(int j=0;j<i—1;j++){
if (A[i]<A[j])count++;

o A W N R

o Obviously the above algorithm is ©(n?).

e We will use divide-and-conquer to count the inversions in ©(nlog n).

Hikmat Farhat Analysis of Algorithms April 7, 2020 4/1

Modified Merge Sort

o If we divide an array in two then the total number of inversions is the
sum of three parts

@ Inversions in the left part

@ Inversions in the right part

© Inversions of elements of the right part relative to elements on the left
part

@ The first two part are just recursive calls.

@ The third part can be computed using the merge procedure of merge
sort

@ Note that in the above figure the inversions due to element x relative
to elements in the left part are the same whether the parts are sorted
or not.

Hikmat Farhat Analysis of Algorithms April 7, 2020 5/1

@ The basic idea for the counting algorithm is to modify the merge
procedure of merge sort to allow us to count the inversion.

@ Given two sorted arrays L and R, we merge them the same way as it
was done using merge sort

@ Let / and j be the indices of elements of L and R respectively where
initially i = j = 0 we merge L and R into an array C indexed by k.

o If L[i] < R[j] then L[i] is copied to C[k] and i =i+ 1 and k = k + 1.

e If R[j] < L[i] then R[j] is copied to C[k] and j =+ 1 and k = k+ 1.
Also in this case all the remaining elements of L are larger than R[j]

which means that the number of inversions is incremented by the
number of elements remaining in L.

Hikmat Farhat Analysis of Algorithms April 7, 2020 6/1

Example

o L= {%,7, 12} and R = {ZTI,S, 15}.
i j
@ First copy 2 to C to obtain L = {2,?, 12} and R = {4T1,8, 15}.
i j

@ Copy 4 to C and increment the number of inversions by 2 because

there are two elements remaining in L, namely 7 and 12. to obtain
o L= {2,1, 12} and R = {4,?, 15}.

i j
e Copy 7 to C to obtain L ={2,7, 1T2} and R = {4,?, 15}.
i j

@ Copy 8 to C and increment the number of inversions by 1 because

there is one element remaining in L, namely 12.

@ The total number of inversions is 3.

Hikmat Farhat Analysis of Algorithms April 7, 2020 7/1

Master Theorem (special case)

@ A generalization of the previous cases is done using a simplified
version of the Master theorem

T(n) = aT(n/b) + O(n9)

Hikmat Farhat Analysis of Algorithms April 7, 2020 8/1

T(n) = aT(n/b) + cn
—a [ar(n/t#) + c(n/b)d} +end
= a°T(n/b?) 4 cn(a/b?) + cn
— 2 [ar(n/b3) + c(n/bz)d] +cnd(a/b?) + cn?
= 33T (n/b%) + cn(a/b?)? + cn(a/b?) + cn

i—1
=a'T(n/b") + cn Z(a/bd)l
1=0

The above reaches T(1) when b* = n for some k. We get

Hikmat Farhat Analysis of Algorithms April 7, 2020 9/1

k—1
T(n)=a"T(1)+cn?) (a/b?)
=0
There are three cases
Q a=b
Q@ a<b?
Q a> b

] = - 3
Hikmat Farhat Analysis of Algorithms

case 1: a = b

If a= b9 (i.e £z = 1) then we get

T(n)=a"T(1) +cn? -k
Since k = logy, n then
T(n) = a°®"T(1) 4+ cn? log, n
= n'°852T (1) + cn log, n
=n9T(1) + cnlogy n
= O(n%log n)

Hikmat Farhat Analysis of Algorithms April 7, 2020 11/1

case 2: a < b

k—1
T(n)=a"T(1) + cn Z(a/bd)l
1=0
(a/bd)k -1

=akT(1) + cndm

for large n, i.e. n — oo then k = log, n — oo and since a < b9 then
a/b? — 0 Therefore

T(n) = n'°83T(1) 4 cn?

but a < b? = log, a < d and finally

Hikmat Farhat Analysis of Algorithms April 7, 2020 12/1

case 3: a > b

In this case we can write
_ K 4(a/bh)k -
T(n)=a"T(1)+cn =1
= n'°gbaT(1) +gn (a/bd)
— nlogba-,-(l) + gn (a/bd)/ogbn
— nlogba-,-(l) gndnlogb(a/b)
(1) +

d (—d+logpa)

= n'°862T(1) + gnn

— O(n'°8s2)

Hikmat Farhat Analysis of Algorithms April 7, 2020 13/1

Maximum Subarray Sum

@ Given an array A of n elements we ask for the maximum value of
Jj
> A

k=i

@ For example if Ais-2,11,-4,13,-5,-2 then the answer is 20 = Zizz

Hikmat Farhat Analysis of Algorithms April 7, 2020 14/1

Brute Force

@ Compute the sum of all subarrays of an array A of size n and return
the largest.

@ A subarray starts at index i/ and ends at index j where 0 </ < n and
0<j<n

@ Therefore for each possible i and j compute the sum of A[i]. .. A[j].

int maxSubarray(int *A,int n){
int sum=0, max=A[0];

for(int i=0;i<n;i++){
for (j=i;j<n;j++){

sum=0;
for(int k=i;k<=j;k++)
sumt+=A[k];
i f (max<sum)max=sum;
}
}
return max;

Hikmat Farhat Analysis of Algorithms April 7, 2020 15/1

Complexity

@ To determine the complexity of the brute force approach we can see
that there are 3 nested loop therefore the complexity of the problem
depends on how many times line 14 is executed

@ The number of executions is

n—1n-1 j n—1n-1
PIDIDBEDIPWEIES
i=0 j=i k=i i=0 j=i

@ To evaluate the first sum let m = — j + 1 then

n—1 n—i
Yoj-i+1=) m=(n—i)(n—i+1)/2
j=i m=1

Hikmat Farhat Analysis of Algorithms April 7, 2020 16/1

o Finally, we get

n—1

3 2

2
S (n—i)(n—i+1)2 = T3
i=0

6
= 0(n®)

=] = = E A
Hikmat Farhat Analysis of Algorithms

Divide and Conquer

@ general technique that divides a problem in 2 or more parts (divide)
and patch the subproblems together (conquer).

@ In this context if we divide an array in two subarrays. We have 3
possibilities:
© max is entirely in the first half

© max is entirely in the second half
© max spans both halves.

@ Therefore the solution is max(left,right,both)

Hikmat Farhat Analysis of Algorithms April 7, 2020 18/1

Both halves

o If the sum spans both halves it means it includes the last element of
the first half and the first element of the second half
@ This means that the we are looking for the sum of

@ Max subsequence in first half that includes the last element
@ Max subsequence in the second half that includes the first element

Ss= max > A[K|

0<i<n/2

n/2<j<n k=i
n/2—1
= Alk Alk
o125 | 2 A S
n/2<j<n k=n/2
n/2—1 j
= Alk Alk
o2 2 AT e, 2 A

Hikmat Farhat Analysis of Algorithms April 7, 2020 19/1

Computing max that spans both halves

computeBoth (A left,right)

sumy < sump < 0
center < (left + right)/2
for i = center to left do
sumy <— sumy + Ali]
if sum; > max; then
‘ maxy < sumy
for j = center + 1 to right do
sumy < sumyp + Alj]
if sumo > max, then
‘ maxp < sump

return max; + maxp

Hikmat Farhat Analysis of Algorithms April 7, 2020 20/1

Recursive Algorithm

maxSubarray (A, left, right)

if left = right then
| return A[left]
center < (left + right)/2
51 < maxSubarray(A, left, center)
S, < maxSubarray(A, center + 1, right)
S3 < computeBoth(A, left, right)
return max(S1, S2, S3)

Hikmat Farhat Analysis of Algorithms April 7, 2020 21/1

Complexity

@ Given an array of size n the cost of the call to maxSubarray is divided
into two computations

@ The work of computeBoth which is ©(n).
@ Two recursive calls on the problem with half the size
© Therefore the total cost can be written as

T(n)=2T(n/2) + ©(n)

@ Using the Master theorem we get T(n) = ©(nlogn)

Hikmat Farhat Analysis of Algorithms April 7, 2020 22/1

Medians

@ The median,m of a sequence of n numbers is defined such that half of
values (more precisely |n/2]) of the sequence are bigger than m. For
example for the sequence 48,5, 10, 25, 42 the median is 25.

@ Obviously the median of n numbers can be computed by sorting the
sequence in ©(nlog n) steps then selecting the value at position |n/2]

@ Can we do better?

@ It turns out that yes, by solving the general problem of selecting the
k™ smallest element of an array of n elements.

Hikmat Farhat Analysis of Algorithms April 7, 2020 23/1

Strategy

@ We use a divide and conquer strategy as follows:
© Given an array A of n elements, select randomly a value m from A.
@ Partition A into three arrays: L that contains all the elements smaller
than m in no particular order, E all the elements that are equal to m
and R an array containing all the elements bigger than m.
© Now we have three cases:
@ if k <| L| then the k™ element is in L and we call the algorithm

recursively on the, smaller array, L

@ if|L|< k<|L|+|E| then the k™ element is in E and therefore it is
equal to m.

© if m>| L|+ | E | then the k™ element is in R and we call the
algorithm recursively on the, smaller array, R

Hikmat Farhat Analysis of Algorithms April 7, 2020 24/1

Select (A, left, right, k)

if left = right then
‘ return Alleft]
m <— random(left, right)
val «+ A[m]
Partition(A, L, E, R, m)
if k<|L|then
| return Select (A, left, left+ | L| —1, k)
elseif |L|<k<|E|+|L]|then
‘ return val
else
| return Select (A, left+ | E |+ | L |, right,k— | E| —| L)

Hikmat Farhat Analysis of Algorithms April 7, 2020 25/1

The partition algorithm

@ The partition algorithm is a simple extension of the partition
algorithm used for quicksort.
@ In the select algorithm we had the arrays in the order L, E, R.

@ for convenience and similar to the partition in quicksort the partitions
will look like the figure below

<val i sval k =val

Hikmat Farhat Analysis of Algorithms April 7, 2020 26/1

Partitioning Algorithm

@ Assuming that the pivot is already in place in a[r].

PARTITION(a,p,r)
i—p—1

k+<p

Jjr

pivot <— alr]

while k < j do

if a[k] > pivot then
| k< k+1

else if a[k] < pivot then

i—i+1

swap(a[i], a[k])

k< k+1

else

Ji—-1

swap(a[j], a[k])

return /,j

Hikmat Farhat Analysis of Algorithms April 7, 2020 27/1

@ The

>

>
>
>

partition algorithm is used by the select algorithm as follows:

the array L is a[p] ... a[i].

the array E is a[j] ... a[r].

the array R is a[i +1]...a[j — 1].

In code for the select algorithm we assumed that the order of the
subarrays is L followed by E followed by R.

Using the partitioning we modified select is

Hikmat Farhat Analysis of Algorithms April 7, 2020

28/1

Select (A, left, right, k)

if left==right then
‘ return Aleft]
m <— random(left, right)
val «+ A[m]
Partition(A,i,j, m)
if kK<i—left+1 then
‘ return Select (A, left, i, k)
elseif k<i—s+e—j+2then
‘ return val
else
| return Select(A,i+1,j — 1,k — (right — left + i — j + 2))

Hikmat Farhat Analysis of Algorithms April 7, 2020 29/1

@ the complexity of the k selection problem depends on both the
recursive part and the partition part.

e for an array of n items the partition part is clearly ©(n).

@ The recursive part depends on the pivot. Suppose the pivot is the it
element then the subproblems are of size i (i.e. from 0 to i — 1) and
n—i—1(i.efromi+1andn—1)

@ In the k selection problem, unlike quicksort, the recursion is called on
only one subproblem.

@ the worst case behavior occurs when the algorithm repeatedly selects
the largest or the smallest element as the pivot.

@ in this case the subproblem size is n — 1 and the algorithm obeys the
recurrence

T(n)=T(n—1)40O(n)

@ whose solution is T(n) = ©(n?)

Hikmat Farhat Analysis of Algorithms April 7, 2020 30/1

Average case complexity
@ The average case complexity is much better than the worst case

@ we start by assuming that any index can be equally likely selected as
the pivot

@ Since the algorithm selects only one subproblem we can bound the
complexity by selecting the largest subproblem. Let X; be a random
variable

T(n) = T(max(i,n—i—1))+ ©(n)

@ averaging over all possible values of / we get

n—1
T(n %ZTmaXIn—/—l))—F@(n)
i=0
n—1
- 3 (i) + ©(n)

=[n/2]
Hikmat Farhat Analysis of Algorithms April 7, 2020 31/1

we use the substitution method to prove that the average case complexity
is O(n). To show that T(n) = O(n) we need to find ¢ > 0 and ng such
that T(n) < cn for all n > no.

@ Now assume that T (k) < c- k then the recurrence becomes

) n—1
T z . .
(n) < p Z c-k+a-n
k=|n/2]

Hikmat Farhat Analysis of Algorithms April 7, 2020 32/1

o Keeping mind that [n/2| > n/2 -1

n—1 [n/2]—-1

T(n)gan k= > |k+a-n
k=0 k=0
_an[”(”_l)/z—L"/2J(Ln/2J—1)/2]+a.n
<2002~ (02102 -2)/2
<[—n—n?/4+3n/2-2]+a-n
< S@R/atn/2-2)+a n

c-n ¢
Sc.n—(————a'n>

4 2

o choose ¢ > 4a and ny = -2

Hikmat Farhat Analysis of Algorithms April 7, 2020 33/1

Multiplying two numbers

@ Given 2 n-bit numbers the "traditional” multiplication takes ©(n?)
since there are n? 2-bit multiplications and ©(n) additions of n — bit
numbers (for a total of ©(n?).

@ In this section we give a divide-and-conquer algorithm to compute the
product of two n-bit numbers.

@ The basic ideas is that an n — bit x can be divided into the most
significant n/2 bits and least significant n/2 bit. Two numbers x and
y can be written as x = x1 - 22 + xg and y = y; - 2"/2 4 yo.

Hikmat Farhat Analysis of Algorithms April 7, 2020 34/1

n /2 bits

n /2 bits
x1 x0
y1 y0

Hikmat Farhat Analysis of Algorithms

April 7, 2020

35/1

Therefore x - y can be written as
(x1-2"2 4 x0) - (y1-2"2 4 y0) =
x1-yl-2"+
(x1-y0+x0-y1)-2"2 4 x0- y0

We have reduced the multiplication of n-bit numbers to that of
n/2-bit numbers and multiplication by 2" and 2"/2.

Multiplication by 2" is equivalent with n-bit left shift and it can be
done in ©(n).

Therefore the recurrence can be written as

T(n)=4T(n/2) + ©(n)

Using the master theorem : a=4,b=2,d =1 The solution is
T(n) = O(n'°g24) = ©(n?) 1

Hikmat Farhat Analysis of Algorithms April 7, 2020 36/1

@ We can get a better performance by noticing the following
(x1+x0)-(y1+y0)=x1-y1+x0-y0+ (x1-y0+x0-yl)
@ Rearranging terms we get
(x1-y0+x0-yl) =(x1+ x0)-(y1+y0) —x1-yl—x0-y0

@ Since x1-y1 and x0 - y0 are already computed then we need one
extra multiplication instead of two. The recurrence becomes

T(n) =3T(n/2) + ©(n)

e Thus T(n) = ©(n'°e23) = Q(n!>8)

Hikmat Farhat Analysis of Algorithms April 7, 2020 37/1

Divide-and-Conquer algorithm

1 int multiply(int x,int y,int n){

© 0w N o B W N

- =
= O

12

13}

int xl=x>>n/2;

int yl=y>>n/2;

int mask=(l<<n/2)-1;

int x0=x & mask;

int y0O=y &mask;

int xlyl=multiply(x1,yl,n/2);
int xOyO=multiply (x0,y0,n/2);
int sum=x1lyl4+x0y0—multiply ((x0+x1), (yO+yl),n/2);
x1lyl=xlyl<<n;

sum=sum<<n /2;

return x1lyl4sum+x0yO0;

Hikmat Farhat Analysis of Algorithms April 7, 2020

38/1

Tower of Hanoi

o Let move(n, start, end, aux) be the function that moves n bricks from
peg start to peg end using peg aux as auxiliary.

@ Suppose that we can move n — 1 bricks from the start peg and put
them in aux then all we have to do is move the remaining brick from
start to end then transfer the n — 1 from aux to end

@ we can write

1 move(n,start ,end,aux){

2 if(n==1)cout<<"("<<start <<","<<end<<")'<<endl;
3 else {
4 move(n—1,start ,aux,end);
5 move(1l,start ,end,aux);
6 move(n—1,aux,end, start);
7
}

Hikmat Farhat Analysis of Algorithms April 7, 2020 39/1

Complexity

@ The solution to the Tower of Hanoi obeys the following recurrence
relation

T(n)=2T(n—1)4+06(1)
=2T(n—1)+¢
=22T(n—2)+c]+c
=2°T(n—2)+2c+c
=22[2T(n—3)+c]+2c+c
=22T(n—3)+2%c+2'c + 2%

Hikmat Farhat Analysis of Algorithms April 7, 2020 40/1

@ The recursion stops when kK = n — 1 and we get

T(n)=2""1T(1)+ (2" -1)c=06(2")

=] = = E A
Hikmat Farhat Analysis of Algorithms

	Binary Search
	Counting Inversions
	Master Theorem

