
Analysis of Algorithms
Coping With NP Completeness

Hikmat Farhat

April 21, 2020

Hikmat Farhat Analysis of Algorithms April 21, 2020 1 / 31

Coping with NP-complete problems

It seems impossible to solve NP-complete problems in polynomial
time

We can try to find an ”efficient” non-polynomial time algorithm

Basically find a solution without using brute force (i.e. trying all
possibilities)

Brute force for 3SAT
I Given a 3SAT instance with n variables
I try all possible 2n assignments
I if formula not satisfiable then we have to go through all 2n possibilities
I Complexity O(n3 · 2n). Why ?
I Because evaluating each clause takes constant time
I There are at most n choose 3 clauses

(
n
3

)
= n!

(n−3)!3! = O(n3)

Hikmat Farhat Analysis of Algorithms April 21, 2020 2 / 31

SAT

Can we do better?

Construct a solution, if possible, step by step

If current partial solution cannot be extended to a valid solution:
backtrack

Consider the formula below: if we assign the true value to variable x :
1 Remove all clauses containing x since they are satisfied
2 Remove x̄ from all clauses

Note that an empty clause is unsatisfiable

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x̄1) ∧ (x1 ∨ x2 ∨ x̄3) ∧ (x1 ∨ x̄4) ∧ (x2 ∨ x̄4)

Hikmat Farhat Analysis of Algorithms April 21, 2020 3 / 31

Backtracking example

As can be seen from the backtracking below the formula is satisfiable
with

x1 = False, x2 = True, x4 = False and x3 can be either True or False

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x̄1) ∧ (x1 ∨ x2 ∨ x̄3) ∧ (x1 ∨ x̄4) ∧ (x2 ∨ x̄4)

(x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x̄3) ∧ (x̄4) ∧ (x2 ∨ x̄4)

x1 = 0

(x3 ∨ x4) ∧ (x̄3) ∧ (x̄4)

x2 = 0

(x4) ∧ (x̄4)
x3 = 0

()
x4 = 0

()
x4 = 1

() ∧ (x̄4)

x3 = 1

(x̄4)

x2 = 1

() ∧ (x2 ∨ x̄4)

x1 = 1

Hikmat Farhat Analysis of Algorithms April 21, 2020 4 / 31

Solving 3SAT using backtracking

Let φ = C1 ∧ C2 ∧ . . . ∧ Ck be a 3SAT formula with n variables and k
clauses.

If φ is empty, i.e. has no clauses, then it is trivially satisfiable.

If φ has at least one clause we can write

φ = (x ∨ y ∨ z) ∧ φ′

= (x ∧ φ′) ∨ (y ∧ φ′) ∨ (z ∧ φ′)

So we reduce the 3SAT with n variables to three probems with n − 1
variables.

We obtain the recurrence

T (n) = 3T (n − 1) + O(n3)

With a solution of T (n) = O(n33n). Which is worse than before !

Hikmat Farhat Analysis of Algorithms April 21, 2020 5 / 31

We are doing unnecessary work.

Now x ∧ φ is true if both terms are true which is equivalent to φ′ |x
(i.e. φ′ is sat given that x is true)

If φ′ |x is not satisfiable then y ∧ φ′ is satisfiable iff φ′ | x̄y
Finally, if both φ′ |x and φ′ | x̄y are not satisfiable then z ∧ φ′ is
satisfiable iff φ′ | x̄ ȳ z is.

The above suggests the following algorithm for solving a 3SAT
formula

Hikmat Farhat Analysis of Algorithms April 21, 2020 6 / 31

SolveSAT (φ)
if φ = ∅ then

return True
if φ contains an empty clause then

return False
Decompose φ = (x ∨ y ∨ z) ∧ φ′
if SolveSAT (φ|x) then

return True
if SolveSAT (φ|x̄y) then

return True
return SolveSAT (φ|x̄ ȳ z)

The SolveSAT function obeys the recurrence

T (n) = T (n − 1) + T (n − 2) + T (n − 3) + O(nk)

Which has a solution (see later) O(1.839n)

Hikmat Farhat Analysis of Algorithms April 21, 2020 7 / 31

Annihilator method

An operator takes functions as input to produce different functions.

We will use the following operators
1 Sum of two functions (f + g)(n) = f (n) + g(n)
2 Scale of a function (α · f)(n) = α · f (n)
3 Shift (right) (E · f)(n) = f (n + 1).

An annihilator is an operator that transforms a function into a null
function.

For example, let f (n) = 2n then
(E − 2)f (n) = (E − 2)2n = 2n+1 − 2 · 2n = 0

Hikmat Farhat Analysis of Algorithms April 21, 2020 8 / 31

In general (E − c)α · an = α · an+1 − α · c · an = α · (a− c) · an. This
is null iff c = a.

Also, if c 6= a then (E − c)an = constant · an

How does that help us in solving recurrences?

Consider the following recurrence

T (n) = 3T (n − 1)

⇒T (n + 1)− 3T (n) = 0

⇒ET (n)− 3T (n) = 0

→(E − 3)T (n) = 0

⇒T (n) = α · 3n for some constant α

Hikmat Farhat Analysis of Algorithms April 21, 2020 9 / 31

We saw from the above that for the shift operator

(E − c)α · an = α · (E − c)an

Then if we have αan + βbn it follows that

(E − b)(E − a)(αan + βbn) = (E − b)γbn = γ(E − b)bn = 0

In general, for distinct a0, . . . , ak

(E − a0)(E − a1) . . . (E − ak)

[
k∑

i=0

αia
n
i

]
= 0

Hikmat Farhat Analysis of Algorithms April 21, 2020 10 / 31

Polynomials

Consider the function α · n + β

(E − 1)αn = α(n + 1) + β − αn − β = α

So (E − 1)2(αn + β) = 0

In general if (E − 1)kF (n) = 0 then

F (n) =
k−1∑
i=0

αin
i

Also (E − a)kF (n) = 0 then

F (n) =

(
k−1∑
i=0

αin
i

)
· an

Hikmat Farhat Analysis of Algorithms April 21, 2020 11 / 31

Fibonacci

Recall that the Fibonacci sequence obeys the following recurrence

F (n + 2) = F (n + 1) + F (n)

⇒E 2F (n)− EF (n)− F (n) = 0

⇒(E 2 − E − 1)F (n) = 0

The above can be factored as

(E − φ)(E − φ̂)F (n) = 0

Where φ = 1+
√
5

2 and φ̂ = 1− φ.

Therefore

F (n) = αφn + βφ̂n

Hikmat Farhat Analysis of Algorithms April 21, 2020 12 / 31

The values of α and β are determined from the boundary conditions
F (0) = 0 and F (1) = 1 thus α = −β = 1√

5
and we get

F (n) =
1√
5
φn − 1√

5
(1− φ)n

Hikmat Farhat Analysis of Algorithms April 21, 2020 13 / 31

Tower of Hanoi

Remember for the Tower of Hanoi the recurrence was

T (n) = 2T (n − 1) + 1

using E

(E − 2)T − 1 = 0

This is the first time we see a non homogeneous

Hikmat Farhat Analysis of Algorithms April 21, 2020 14 / 31

AVL Tree

Recall an AVL tree has the property that the left and right subtrees
cannot have a height difference more than 1.

Consider the smallest (in terms of number of nodes) AVL tree of
height h.

Since the tree is the smallest then the left tree has height h − 1 and
the right has height h − 2 (or vice versa).

Therefore the smallest AVL of height h obeys the recurrence

N(h) = N(h − 1) + N(h − 2) + 1

⇒ N(h + 2)− N(h + 1)− N(h) = 1

⇒ (E 2 − E − 1)N(h) = 1

The solution is

N(h) = αφh + βφ̂h + γ

Hikmat Farhat Analysis of Algorithms April 21, 2020 15 / 31

We can determine the constants α, β, γ by using the boundary
conditions N(0) = 1,N(1) = 2,N(2) = 4

We need the asymptotic behavior, for large h

N(h) = Ω(φh)

Therefore

h = O(log n)

Hikmat Farhat Analysis of Algorithms April 21, 2020 16 / 31

Subset sum

Given a set of integers S and a target value t the subset sum asks if
there is a subset M ⊆ S such that sum(M) = t.

We already have seen a solution using dynamic programming.

Here we will solve it using backtracking.

Let S = {x1, . . . , xn}. At each step i the backtracking algorithm tries
two choices: including/excluding xi in/from the solution.

Hikmat Farhat Analysis of Algorithms April 21, 2020 17 / 31

Subset Sum

At each step keep two variables: sum and remainder

The sum denotes the current sum and the remainder denotes the sum
of all items that have not been used yet.

Let t be the target. Given a choice between adding/not adding
element with value v

1 if sum + v = t then solution found, return solution.
2 if sum + v > t backtrack, do not include v
3 if sum + remainder − v < t backtrack .

Hikmat Farhat Analysis of Algorithms April 21, 2020 18 / 31

Branch and Bound: Knapsack

We compute an upper bound using the greedy solution for the
fractional knapsack

S = v1 + v2 + . . .+ vk +
W − w1 − . . .− wk

wk+1
vk+1

But since

v1
w1

>
v2
w2

> . . . >
vk
wk

Then we can write

S ≤ w1

w1
v1 +

w2

w1
v1 + . . .+

wk

w1
v1 +

W − w1 − . . .− wk

w1
v1

S ≤W · v1
w1

Hikmat Farhat Analysis of Algorithms April 21, 2020 19 / 31

Assuming that items are sorted by descending v
w we use backtracking

with the same order of selection for the items

At each step, given a knapsack of size W and a list of unused items

We have an upper bound for the entire branch

As an example assume we have a knapsack of capacity W = 11 and
the following items

item Value Weight

1 1 1
2 2 3
3 3 5
4 4 7

Hikmat Farhat Analysis of Algorithms April 21, 2020 20 / 31

v = 0,w = 0

ub = 11× 1 = 11

v = 0,w = 0

ub = 11× 0.66 = 7.26

v = 1,w = 1

ub = 1+10×0.66 = 7.6

v = 3,w = 4

ub = 3 + 7× 0.6 = 7.2

v = 1,w = 1

ub = 1 + 10× 0.6 = 7

v = 6,w = 9

v = 6(items 1,2,3)

v = 3,w = 4

ub = 7

v = 2,w = 3

ub = 2 + 8× 0.6 = 6.8

v = 7,w = 11

v = 7(items1, 2, 4)

v = 0,w = 0

ub = 11× 0.6 = 6.6

v = 3,w = 4

v = 3(items1, 2)

w1

1

w/1

2

w2

3

w/2

4

w3

5

w/3

6

w4

7

w/4

8

w2
9 w/2

10

Figure: Branch and Bound for Knapsack instance

Hikmat Farhat Analysis of Algorithms April 21, 2020 21 / 31

Example2

Consider the following instance with the knapsack weight W = 7

item Value Weight density

1 8 5 1.6
2 6 4 1.5
3 2 2 1
4 1 1 1

Hikmat Farhat Analysis of Algorithms April 21, 2020 22 / 31

v = 0,w = 7

ub = 7× 1.6 = 11.2

v = 0,w = 7

ub = 7× 1.5 = 10.5

v = 8,w = 2

ub = 8 + 2× 1.5 = 11

w2 = 4 > 2

Not feasible

v = 8,w = 2

ub = 8 + 2× 1 = 10

v = 10,w = 0

items(1,3)

v = 6,w = 2

ub = 6 + 2× 1 = 8

v = 0,w = 7

ub = 7× 1 = 7

w1

1

w/1

2

w2

3

w/2

4

w3

6

w2
9 w/2

10

Figure: Branch and Bound for Knapsack instance

Hikmat Farhat Analysis of Algorithms April 21, 2020 23 / 31

Clique

Recall that given a graph G = 〈V ,E 〉 a subset S ⊆ V is said to be a
clique iff for all u, v ∈ S then (u, v) ∈ E .

We also saw that if G has a clique of size k then Ḡ = 〈V , Ē 〉 has an
independent set of size k , where (u, v) ∈ E iff (u, v) /∈ E

We will use branch and bound to find a clique of maximum size in a
given graph

First we develop lower and upper bounds for the clique problem.

Hikmat Farhat Analysis of Algorithms April 21, 2020 24 / 31

Upper bound: greedy k-coloring

Given a graph G = 〈V ,E 〉 we need to color it using k-colors.

First assign a number to each color: 1, 2, . . . , k.

Choose a vertex v and assign to it the lowest number that is not
used by its neighbors.

Hikmat Farhat Analysis of Algorithms April 21, 2020 25 / 31

Example

We use the greedy coloring to the graph shown below were nodes are
considered in alphabetical order.

The colors are numbered as
{Red = 1,Green = 2,Blue = 3,Yellow = 4,Magenta = 5, . . .}

a

b c

d e f

Hikmat Farhat Analysis of Algorithms April 21, 2020 26 / 31

Greedy coloring not optimal, used as upper bound

The greedy coloring in the previous example used 4 colors

An optimal coloring, as shown below, uses only 3 colors

a

b c

d e f

But greedy coloring gives an upper bound:

For any graph optimal coloring ≤ greedy coloring

Hikmat Farhat Analysis of Algorithms April 21, 2020 27 / 31

How is that used for Clique?

Suppose a graph G = 〈V ,E 〉 has a Clique of size k.

Then G cannot be colored by less than k colors

Conversely, if a graph has a k coloring then

The size of maximal Clique ≤ k .

Let kg be the number of colors obtained by greedy coloring

Since kg is an upper bound for coloring

Then the size of maximal Clique ≤ kg

Hikmat Farhat Analysis of Algorithms April 21, 2020 28 / 31

Lower Bound: greedy Clique

Given a graph G = 〈V ,E 〉 we can obtain a Clique using a greedy
strategy as follows

1 C ← ∅
2 Select the highest degree vertex v from V − C and added to C
3 Remove all nodes that are not connected to v from V
4 repeat until V is empty

Hikmat Farhat Analysis of Algorithms April 21, 2020 29 / 31

Greedy Clique Example

a f

b e

c d

(a)

a f

b e

c d

(b)

a f

b e

c d

(c)

a f

b e

c d

(d)

a f

b e

c d

(e)

Hikmat Farhat Analysis of Algorithms April 21, 2020 30 / 31

Clique Branch-and-Bound

As an example for using branch-and-bound for clique using the
already discussed upper and lower bounds

See the paper by Dawn M. Strickland on blackboard.

Hikmat Farhat Analysis of Algorithms April 21, 2020 31 / 31

	Backtracking
	Solving recurrences: annihilator method
	Subset sum

	Branch and Bound
	Knapsack
	Clique

