Analysis of Algorithms
Coping With NP Completeness

Hikmat Farhat

April 21, 2020

=] = = E A
Hikmat Farhat Analysis of Algorithms

Coping with NP-complete problems

@ It seems impossible to solve NP-complete problems in polynomial

time

@ We can try to find an "efficient” non-polynomial time algorithm

@ Basically find a solution without using brute force (i.e. trying all
possibilities)
@ Brute force for 3SAT

>

vV vy VY VvYYyYy

Given a 3SAT instance with n variables

try all possible 2" assignments

if formula not satisfiable then we have to go through all 2" possibilities
Complexity O(n®-2"). Why ?

Because evaluating each clause takes constant time

There are at most n choose 3 clauses (3) = (,1_"73'),3, = 0(n?)

Hikmat Farhat Analysis of Algorithms April 21, 2020 2/31

SAT

Can we do better?

Construct a solution, if possible, step by step

If current partial solution cannot be extended to a valid solution:
backtrack

Consider the formula below: if we assign the true value to variable x:

@ Remove all clauses containing x since they are satisfied
@ Remove X from all clauses

Note that an empty clause is unsatisfiable

(x1VxaVx3Vxa)A(X)A(xaVxeVR3)A(x1VXa)A(xeV Xa)

Hikmat Farhat Analysis of Algorithms April 21, 2020 3/31

Backtracking example

@ As can be seen from the backtracking below the formula is satisfiable
with

o x1 = False, xp = True, x4 = False and x3 can be either True or False

|(x1 V xo \/X3\/X4)/\()_(1)/\(X1\/XQ\/)_(3)/\(X1\/)_(4)/\(X2\/)_(4)|

x = x =1

|(X2\/X3\/X4 A(x2 VX3) A ("4)/\(xzv>"<4)|

/ x =1

(s v Az A (a)| ()]

3 =1

Hikmat Farhat Analysis of Algorithms April 21, 2020 4/31

Solving 3SAT using backtracking

o let = GG ANGA...AC, be a3SAT formula with n variables and k
clauses.

o If ¢ is empty, i.e. has no clauses, then it is trivially satisfiable.

@ If ¢ has at least one clause we can write

6= (xVyVz)Ag
— (A V(Y APV (zA)

@ So we reduce the 3SAT with n variables to three probems with n — 1
variables.

@ We obtain the recurrence
T(n)=3T(n—1)+ O(n?)

e With a solution of T(n) = O(n33"). Which is worse than before !

Hikmat Farhat Analysis of Algorithms April 21, 2020 5/31

We are doing unnecessary work.

Now x A ¢ is true if both terms are true which is equivalent to ¢’ |x
(i.e. ¢ is sat given that x is true)

If ¢’ |x is not satisfiable then y A ¢’ is satisfiable iff ¢'|xy

Finally, if both ¢’ |x and ¢'| Xy are not satisfiable then z A ¢/ is
satisfiable iff ¢'|xyz is.

@ The above suggests the following algorithm for solving a 3SAT
formula

Hikmat Farhat Analysis of Algorithms April 21, 2020 6/31

SolveSAT (¢)
if » =0 then
‘ return True
if ¢ contains an empty clause then
‘ return False
Decompose ¢ = (x Vy Vz) A ¢
if SolveSAT (¢|x) then
‘ return True
if SolveSAT (¢|xy) then
‘ return True
return SolveSAT (¢|Xyz)

@ The SolveSAT function obeys the recurrence
T(n)=T(n—1)+ T(n—2)+ T(n—3)+ O(n¥)

@ Which has a solution (see later) O(1.839")

Hikmat Farhat Analysis of Algorithms April 21, 2020 7/31

Annihilator method

@ An operator takes functions as input to produce different functions.
@ We will use the following operators
@ Sum of two functions (f + g)(n) = f(n) + g(n)
@ Scale of a function («- f)(n) = «- f(n)
@ Shift (right) (E- f)(n) = f(n+1).
@ An annihilator is an operator that transforms a function into a null
function.

@ For example, let f(n) = 2" then
(E—-2)f(n)=(E—2)2"n =21 _2.2"=¢

Hikmat Farhat Analysis of Algorithms April 21, 2020 8/31

In general (E —c)a-a"=a-a" —a-c-a"=a-(a—c)-a". This
is null iff ¢ = a.
Also, if ¢ # a then (E — c¢)a" = constant - a"

How does that help us in solving recurrences?

Consider the following recurrence

T(n)=3T(n—1)
=T(n+1)—3T(n)=0
=ET(n)—3T(n)=0
—(E—3)T(n)=0

=T(n) = a - 3" for some constant «

Hikmat Farhat Analysis of Algorithms April 21, 2020 9/31

@ We saw from the above that for the shift operator

(E—c)a-a"=a-(E—c)ad"
@ Then if we have aa” + 8b" it follows that
(E — b)(E — a)(ad" + Bb") = (E — b)yb" =~(E — b)b" =0

@ In general, for distinct ag, ..., ax

k
(E —a0)(E —a1)...(E — ax) [Z a,-a,."] =0

Hikmat Farhat Analysis of Algorithms April 21, 2020 10/31

Polynomials

o Consider the function a- n+ (8

o (E—lan=a(n+1)+B—-an—F=a
e So (E—1)?(an+8)=0

o In general if (E — 1)KF(n) = 0 then

Hikmat Farhat Analysis of Algorithms April 21, 2020 11/31

Fibonacci

@ Recall that the Fibonacci sequence obeys the following recurrence

F(n+2)=F(n+1)+ F(n)
=E?F(n) — EF(n) — F(n) =0
=(E? = E—1)F(n) =0

@ The above can be factored as

o Where ¢ = 15 and § =1 — ¢.

@ Therefore

F(n) = a¢" + Bo"

Hikmat Farhat Analysis of Algorithms April 21, 2020 12/31

@ The values of o and 3 are determined from the boundary conditions

F(0)=0and F(1)=1thusa=—f = and we get
1
Flm) = 0" = ==)"

Hikmat Farhat Analysis of Algorithms April 21, 2020 13/31

Tower of Hanoi

@ Remember for the Tower of Hanoi the recurrence was
T(n)=2T(n—1)+1
e using E
(E-2)T-1=0

@ This is the first time we see a non homogeneous

Hikmat Farhat Analysis of Algorithms April 21, 2020 14/31

AVL Tree
@ Recall an AVL tree has the property that the left and right subtrees
cannot have a height difference more than 1.
e Consider the smallest (in terms of number of nodes) AVL tree of
height h.
@ Since the tree is the smallest then the left tree has height h — 1 and
the right has height h — 2 (or vice versa).

@ Therefore the smallest AVL of height h obeys the recurrence

N(h) = N(h—1)+ N(h—-2)+1
= N(h+2)— N(h+1)— N(h)

=1
= (E>?~E-1)N(h) =1

@ The solution is
N(h) = a¢" + 8" + 5

Hikmat Farhat Analysis of Algorithms April 21, 2020 15/31

@ We can determine the constants «, 3, by using the boundary
conditions N(0) = 1,N(1) =2,N(2) =4

@ We need the asymptotic behavior, for large h
N(h) = Q(¢")
@ Therefore

h = O(log n)

Hikmat Farhat Analysis of Algorithms April 21, 2020 16 /31

Subset sum

o Given a set of integers S and a target value t the subset sum asks if
there is a subset M C S such that sum(M) = t.

o We already have seen a solution using dynamic programming.
@ Here we will solve it using backtracking.

o Let S ={x1,...,xn}. At each step i the backtracking algorithm tries
two choices: including/excluding x; in/from the solution.

Hikmat Farhat Analysis of Algorithms April 21, 2020 17/31

Subset Sum

@ At each step keep two variables: sum and remainder
@ The sum denotes the current sum and the remainder denotes the sum
of all items that have not been used yet.

@ Let t be the target. Given a choice between adding/not adding
element with value v
© if sum -+ v = t then solution found, return solution.
@ if sum-+ v > t backtrack, do not include v
© if sum + remainder — v < t backtrack .

Hikmat Farhat Analysis of Algorithms April 21, 2020 18/31

Branch and Bound: Knapsack

@ We compute an upper bound using the greedy solution for the
fractional knapsack

W —wy —...— w
S=vi+w+...+v+ Vk+1
Wik+1
@ But since
Vi V2 Vi
—_— > — > ... > —
w1 wWo Wi
@ Then we can write
w1 Wo Wi W—Wl—...—Wk
S<—vi+—vi+...+—v+ Vi
wi wi w1 w1
vy
S<w. 2
wy

Hikmat Farhat Analysis of Algorithms April 21, 2020 19/31

@ Assuming that items are sorted by descending
with the same order of selection for the items

we use backtracking

@ At each step, given a knapsack of size W and a list of unused items

@ We have an upper bound for the entire branch

@ As an example assume we have a knapsack of capacity W = 11 and

the following items
item ‘ Value ‘ Weight

1

A~

Hikmat Farhat Analysis of Algorithms

1

N

1

3
5
7

April 21, 2020

20/31

v=0,w=0

ub=11x1=11

w/1

iy

v=1lw=1

ub=1+10x0.66 =7.6

w2 |

w/2

3y

v=3w=4

V4

J2

v=0,w=0

ub =11 x 0.66 = 7.26

w2

9¢7

ub=3+7x06=72

v=1lw=1

v=2,w=3

ub=1+10x06=7

ub=2+8x06=638

w/2

10

w3

5y

v=6w=29

v = 6(items 1,2,3)

Hikmat Farhat Analysis of Algorithms

v

v=7w=11

v = 7(items1,2,4)

¥8

v=0,w=0

ub=11x0.6=6.6

v=3w=4

v = 3(items1,2)

Figure: Branch and Bound for Knapsack instance

April 21,

2020 21/31

Example2

@ Consider the following instance with the knapsack weight W =7

item ‘ Value ‘ Weight ‘ density

1 8 5 1.6
2 6 4 1.5
3 2 2 1
4 1 1 1

Hikmat Farhat Analysis of Algorithms April 21, 2020 22/31

v=0w=7

ub=7x16=112

Not feasible

wl w/1
1y 32
v=8w=2 v=0w=7
ub=8+2x15=11 ub=7x15=105
w2 | w/2 y . w2 w2
v=8w=2 v=6w=2 10
ub=8+2x1=10 ub=6+2x1=8
w3 v=0w=7
6 ub=7x1=7
v=10,w =0
items(1,3)
Figure: Branch and Bound for Knapsack instance
April 21, 2020

23/31

Clique

@ Recall that given a graph G = (V, E) a subset S C V is said to be a
clique iff for all u,v € S then (u,v) € E.

o We also saw that if G has a clique of size k then G = (V, E) has an
independent set of size k, where (u,v) € E iff (u,v) ¢ E

@ We will use branch and bound to find a clique of maximum size in a
given graph

o First we develop lower and upper bounds for the clique problem.

Hikmat Farhat Analysis of Algorithms April 21, 2020 24 /31

Upper bound: greedy k-coloring

@ Given a graph G = (V, E) we need to color it using k-colors.
@ First assign a number to each color: 1,2,... k.

@ Choose a vertex v and assign to it the lowest number that is not
used by its neighbors.

Hikmat Farhat Analysis of Algorithms April 21, 2020 25/31

Example

@ We use the greedy coloring to the graph shown below were nodes are
considered in alphabetical order.

@ The colors are numbered as
{Red =1, Green = 2, Blue = 3, Yellow = 4, Magenta =5, ...}

Hikmat Farhat Analysis of Algorithms April 21, 2020 26/31

Greedy coloring not optimal, used as upper bound

@ The greedy coloring in the previous example used 4 colors

@ An optimal coloring, as shown below, uses only 3 colors

@ But greedy coloring gives an upper bound:

@ For any graph optimal coloring < greedy coloring

Hikmat Farhat Analysis of Algorithms April 21, 2020 27/31

How is that used for Clique?

Suppose a graph G = (V/, E) has a Clique of size k.

Then G cannot be colored by less than k colors
Conversely, if a graph has a k coloring then

The size of maximal Clique < k.

Let k; be the number of colors obtained by greedy coloring

Since kg is an upper bound for coloring

Then the size of maximal Clique < k;

Hikmat Farhat Analysis of Algorithms April 21, 2020 28/31

Lower Bound: greedy Clique

@ Given a graph G = (V, E) we can obtain a Clique using a greedy
strategy as follows
QO C«10
@ Select the highest degree vertex v from V — C and added to C
© Remove all nodes that are not connected to v from V
© repeat until V is empty

Hikmat Farhat Analysis of Algorithms April 21, 2020 29/31

Greedy Clique Example

=

®)
‘ :\e é‘ :\e
‘ . i
(€ O d
© @
L L
(€ TR
©

Hikmat Farhat

Analysis of Algorithms

Clique Branch-and-Bound

@ As an example for using branch-and-bound for clique using the
already discussed upper and lower bounds

@ See the paper by Dawn M. Strickland on blackboard.

Hikmat Farhat Analysis of Algorithms April 21, 2020 31/31

	Backtracking
	Solving recurrences: annihilator method
	Subset sum

	Branch and Bound
	Knapsack
	Clique

